Computer Architecture
A. Tajary; E. Tahanian
Abstract
Background and Objectives: Wireless Network on Chip (WNoC) is one of the promising interconnection architectures for future many-core processors. Besides the architectures and topologies of these WNoCs, designing an efficient routing algorithm that uses the provided frequency band to achieve better network ...
Read More
Background and Objectives: Wireless Network on Chip (WNoC) is one of the promising interconnection architectures for future many-core processors. Besides the architectures and topologies of these WNoCs, designing an efficient routing algorithm that uses the provided frequency band to achieve better network latency is one of the challenges.Methods: Using wireless connections reduces the number of hops for sending data in a network, which can lead to lower latency for data delivery and higher throughput in WNoCs. On the other hand, since using wireless links reduces the number of hops for data transfer; this can result in congestion around the wireless nodes. The congestion may result in more delay in data transfer which reduces the network throughput of WNoCs. Although there are some good routing algorithms that balance traffic using wired and wireless connections for synthetic traffic patterns, they cannot deal with dynamic traffic patterns that existed in real-world applications. In this paper, we propose a new routing algorithm that uses the wireless connections as much as possible, and in the case of congestion, it uses the wired connection instead.Results: We investigated the proposed method using eight applications from the Parsec benchmark suite. Simulation results show that the proposed method can achieve up to 13.9% higher network throughput with a power consumption reduction up to 1.4%.Conclusion: In this paper, we proposed an adaptive routing algorithm that uses wireless links to deliver data over the network on chip. We investigated the proposed method on real-work applications. Simulation results show that the proposed method can achieve higher network throughput and lower power consumption.
Network Security
S. Goli-Bidgoli; M. SofarAli
Abstract
Background and Objectives: Vehicular Ad-Hoc Networks can enhance road safety and enable drivers to avoid different threats. Safety applications, mobile commerce, and other information services are among different available services that are affected by dynamic topology, vehicle’s speed and node ...
Read More
Background and Objectives: Vehicular Ad-Hoc Networks can enhance road safety and enable drivers to avoid different threats. Safety applications, mobile commerce, and other information services are among different available services that are affected by dynamic topology, vehicle’s speed and node misbehaving. Dynamic topology makes the route unstable and unreliable. So, improving the throughput and performance of VANET through reliable and stable routes with low overhead are among the important goals in this context. Methods: Verifying all issues related to the reliable routing, different effective internal, external and environmental factors on route reliability are led to a new security framework in this paper. Black-hole attack and its effects, as the most well-known attack in wireless networks, along with presenting a secure routing protocol are other achievements of this paper. The proposed protocol uses a trust management system to detect and neutralize this type of attack. Results: Simulation results show that the presented trust-based framework can increase the reliability of the networks by decreasing the effect of the malicious nodes in the routing process. Conclusion: Our simulation results show that the proposed protocol can overcome the effects of black-hole attackers and it can increase throughput by 93% and packet received rate by 94.14% compared to the original AODV. Investigating the effect of the other attacks, simulating in an urban area with repetitive communications and considering the RSU in verifying the trustworthiness of entities are suggested for our future works.======================================================================================================Copyrights©2018 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.======================================================================================================