Document Type: Original Research Paper

Authors

1 Department of Electrical engineering, Islamic Azad University, Mahshahr Branch, Mahshahr, Iran

2 Department of Electrical engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

In this paper, a novel continuous-time 1-1 MASH ∆∑ Time-to-digital converter (TDC) is presented. Since the proposed design utilizes 12-bit quantizer based on Gated Switched-Ring Oscillator (GSRO) for both stages, it has been implemented all-digitally. By using a novel structure, only one multi-bit counter is employed for both stages, therefore the required hardware for implementation of this work is much less than conventional TDCs. As a result, complexity, chip area and power consumption would decrease considerably. We implemented the proposed design prototype on an Altera Stratix IV FPGA board. Measured results demonstrate that although this work uses less complex architecture in comparison with previous works, it provides appropriate performance such as 60.7 dB SNR within 8 MHz signal bandwidth at 400 MHz sampling rate while consuming 2.79 mW that reveals suitability of the proposed TDC to be incorporated in fast and accurate applications such as ADPLLs and high-resolution photoacoustic tomography.

Keywords

Main Subjects