A-New-Closed-form-Mathematical-Approach-to-Achieve Minimum Phase Noise in Frequency Synthesizers

Document Type: Research Paper

Authors

Babol Nushirvani University of Technology, Department of Electrical Engineering, Babol, Iran

Abstract

The aim of this paper is to minimize output phase noise for the pure signal synthesis in the frequency synthesizers. For this purpose, first, an exact mathematical model of phase locked loop (PLL) based frequency synthesizer is described and analyzed. Then, an exact closed-form formula in terms of synthesizer bandwidth and total output phase noise is extracted. Based on this formula, the phase noise diagram as a function of bandwidth is plotted. From the analysis and simulation results, it is observed that the synthesizer has a minimum phase noise at a particular bandwidth.

Keywords


[1] B. Razavi, “RF Microelectronics,” 2nd ed, Prentice-Hall, 2011, p. 638.

[2] P.  EnSu,  S.  Pamarti,  “Fractional‐N  Phase‐Locked‐Loop‐Based  Frequency  Synthesis:  A  Tutorial,”  IEEE Trans. Circuits and Systems—II: Express Briefs,  Vol.  56,  No.  12,  pp.  881—885,  December 2009. 

[3] Y.  W.  Kim,  and  J.  D.  Yu,  “Phase  Noise  Model  of  Single  Loop  Frequency  Synthesizer,” IEEE Trans. on Broadcasting,  vol.  54,  NO. 1, pp. 112‐119, March. 2008. 

[4] X. Yan, X. Kuang, and N. Wu, “An Accurate and Fast Behavioral  Model  for  PLL  Frequency  Synthesizer  Phase  Noise/Spurs  Prediction,” IEEE Custom Integrated Circuits Conference, pp. M‐ 17‐1—M‐17‐4, Sept. 2009. 

[5] A.  Hajimiri,  “Noise  in  Phase‐Locked  Loops,”  Symp. on MixedSignal Design, pp. 1‐6, Feb. 2001. 

[6] F. M. Gardner, “Charge‐Pump Phase‐Locked Loops,”IEEE Trans. Comm., Vol. COM‐28, pp.1849‐1858, November 1980.  [7] P.  K.  Hanumolu,  M.  Brownlee,  K.  Mayaram,  and  U.  K.  Moon,  “Analysis  of  Charge‐Pump  Phase‐Locked  Loops,”  IEEE Trans. on Circuit and Systems–I,  Vol.  51,  No.  9,  pp.  1665–1674,  September 2004. 

[8] A. Lacaita, S. Levantino, and C. Samori,  “Integrated Frequency  Synthesizers for Wireless Systems,” UK: Cambridge, 2007. 

[9] A.  Holme,  “15‐25MHz  Fractional‐N  Synthesizer,”  2005.  [Online].  Available  at:  http://www.holmea.demon.co.uk/Frac2/Mash.htm. 

[10] M.H. Perrott, M.D. Trott, and C.G. Sodini, “A Modeling Approach for Sigma‐Delta Fractional‐N Frequency Synthesizers Allowing  Straightforward  Noise  Analysis,”  IEEE  J.  Solid‐State  Circuits,  Vol. 37, No. 8, pp. 1028‐‐1038, 2002. 

[11] H.  C.  Luong,  G.  C.  Leung,  “Low­Voltage CMOS RF Frequency Synthesizers,” Cambridge University Press, 2004.  [12] Dean  Banerjee,  “PLLPerformance, Simulation and Design Handbook,,”(4thEdition), 2008, [online]. Available at:http://ww w.national.com/appinfo/wireless/pll_design book. 

[13] A.  Hajimiri,  T.  H.  Lee,  “A  General  Theory  of  Phase  Noise  in  Electrical Oscillators,”IEEE J. Solid­State Circuits, Vol. 33, No. 2,  pp. 179‐194, Feb. 1998. 

[14] D.  Ham  and  A.  Hajimiri,  “Concepts  and  Methods  in  Optimization  of  Integrated  LC  VCOs,”  IEEE J.    Solid­State Circuits, Vol. 36, No. 6, June 2001. 

[15] J.  Craninckx  and  M.  Steyaert,  “Low‐noise  voltage  controlled  oscillators  using  enhanced  LC‐tanks,” IEEE Trans. Circ.Syst.­II,  Vol. 42, pp. 794‐904, Dec. 1995. 

[16] S.  Norsworthy,  R.  Schreier,  and  G.  Temes,  “Delta‐Sigma  DataConverters: Theory, Design, and Simulation,” IEEE Press, 1997. 

[17] W. Gao, X. Gao, “Design of PLL frequency synthesizer based on  the  fourth‐order  active  filter,” IEEE Conf., ISSSE, International Symposium, Vol. 2, pp. 1‐3, Sept. 2010