M. Bahmani; T. Binazadeh
Abstract
The problem of attitude stabilization of a fighter aircraft is investigated in this paper. The practical aspects of a real physical system like existence of external disturbance with unknown upper bound and actuator saturation are considered in the process of controller design of this aircraft. In order ...
Read More
The problem of attitude stabilization of a fighter aircraft is investigated in this paper. The practical aspects of a real physical system like existence of external disturbance with unknown upper bound and actuator saturation are considered in the process of controller design of this aircraft. In order to design a robust autopilot in the presence of the actuator saturation, the Composite Nonlinear Feedback (CNF) controller along with the Adaptive Integral Sliding Mode (AISM) controllerand the new robust controller that is called AISM-CNF control law is proposed. The CNF part of controller is used for stabilization of the nominal system and also improvement of the transient performance by considering the actuator saturation. The AISM part guarantees robustness against the model uncertainties and/or external disturbances. Since in the proposed approach, the upper bound of the uncertain terms is estimated and therefore there is no need to the prior knowledge of the upper bound of the model uncertainties. Finally, simulation results show the performance of the proposed AISM-CNF controller in term of attitude stabilization of fighter aircraft, robustness, and the good characteristics of the transient responses of the autopilot system in spite of actuator saturation and external disturbance.
Gholam Reza Rezaei; Tahereh Binazadeh; Behrouz Safarinejadian
Abstract
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller ...
Read More
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity property of the optimal state trajectory of the closed-loop system is also guaranteed. Furthermore, state variables of the closed-loop system converge to the origin in finite steps (finite-time stability). In this regard, the LQR+(positive LQR) problem for the linear discrete time systems is stated. Once, the cost function with finite-time horizon is considered and another time the cost function with infinite-time horizon is assumed. In this regard, two theorems are given and proved which consider the problem of building positive and also optimize of the linear time-varying discrete time systems. Results can also be applied to linear time-invariant discrete time systems. Finally, computer simulations are given to illustrate effective performance of the designed controller and also verify the theoretical results.
H. Chenarani; T. Binazadeh
Abstract
This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. ...
Read More
This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. Moreover, robust control laws are designed to guarantee the practical stability of the perturbed systems. For this purpose, the control laws are designed in two cases. In the first case, it is assumed that the designer has freedom in choosing the outputs. In the second case, it is assumed that the outputs are predefined. In this case, first it is considered that the nominal system is passive between its inputs and outputs and then the control law is designed as static output feedback law for the perturbed system. Moreover, in the case that the nominal system is not passive, first, a law is designed such that the new nominal system is passive between the virtual inputs and the outputs. Then, the virtual input is designed as a static output feedback law such that the proposed controllers guarantee the practical stability of the perturbed system. Finally, the computer simulations are performed to show the efficacy and applicability of the designed controllers.