Power Electronics
P. Hamedani; S. Sadr; A. Shoulaei
Abstract
Background and Objectives: The principal aim of this paper is to show an independent vector control of two five-phase Linear Induction Motors (LIMs) that are supplied from a single VSI. Methods: The LIMs are running at the same speed but with different load conditions. This concept can be especially ...
Read More
Background and Objectives: The principal aim of this paper is to show an independent vector control of two five-phase Linear Induction Motors (LIMs) that are supplied from a single VSI. Methods: The LIMs are running at the same speed but with different load conditions. This concept can be especially beneficial in long trains with distributed power. To achieve excellent control characteristics and to reduce the undesirable tension forces between the train mechanical couplers, Fuzzy Logic Controllers (FLCs) have been utilized.Results: As a result, the fault occurrence of the train control systems decreases, and the system reliability increases. The results prove the electrical independence in control of a five-phase two-LIM drive supplied with a single VSI. Furthermore, in the presence of the train mechanical couplers and connections, the application of FLC offers excellent control characteristics and reduces the undesirable tension forces. Furthermore, to obtain a more worthwhile validation of the theoretical results, an experimental set up has been constructed and results have also been presented.Conclusion: According to the results, the undesirable tension forces imposed on train couplers are reduced. Consequently, it leads to higher system efficiency, lower deterioration of the train couplers and connections, greater system reliability, and higher passenger safety and comfort.
Power Electronics
P. Hamedani; A. Shoulaei
Abstract
Background and Objectives: Despite superior privileges that multiphase motors offer in comparison with their three-phase counterparts, in the field of multiphase linear induction motors (LIMs) few studies have been reported until now. To combine the advantages of both multiphase motors and linear induction ...
Read More
Background and Objectives: Despite superior privileges that multiphase motors offer in comparison with their three-phase counterparts, in the field of multiphase linear induction motors (LIMs) few studies have been reported until now. To combine the advantages of both multiphase motors and linear induction motors, this paper concentrates on multiphase LIM drives considering the end effects.Methods: The main contributions of this paper can be divided into two major categories. First, a comparative study has been conducted about the dynamic performance of Fuzzy Logic Controller (FLC) and Genetic-PI controller for a seven-phase LIM drive; and second, because of the superior performance of the FLC method revealed from the results, the harmonic pollution of the FLC based LIM drive has been studied in the case of supplying through a five-level Cascaded H-bridge (CHB) VSI and then compared with the traditional two-level VSI fed one.Results: The five-level CHB-VSI has utilized a multiband hysteresis modulation scheme and the two-level VSI has used the traditional three-level hysteresis modulation strategy. Note that for harmonic distortion assessment both harmonic and interharmonic components are considered in THD calculations.Conclusion: The results validate the effectiveness of the proposed FLC for seven-phase LIM drive supplied with five-level CHB-VSI and guarantee for perfect control characteristics, lower maximum starting current, and significant harmonic and interharmonic reduction.