Document Type : Original Research Paper
Authors
1 Department of Engineering, Shahrekord University, Shahrekord, Iran
2 Control Department of Electrical Engineering Faculty, Shahid Rajaee Teacher Training University, Tehran, Iran
Abstract
Background and Objectives: Increasing DC loads along with DC nature of distributed energy resources (DERs) raises interest to DC microgrids. Conventional droop/non-droop power-sharing in microgrids suffers from load dependent voltage deviation, slow transient response, and requires the parameters of the loads, system and DERs connection status.
Methods: In this paper, a new nonlinear decentralized back-stepping control strategy for voltage control and load sharing of DC islanded microgrids is proposed. The proposed method is robust against the load variations and uncertainty in microgrid parameters and has excellent dynamic and steady-state performance under different operating conditions. The major purpose of the proposed controller is to improve the transient performance of MG with load variations and constant power loads (CPLs). The local controller regulates the terminal voltage of DC-DC converter regarding the local quantities without needs to additional data of other system components.
Results: For simplicity, the proposed method is simulated with PSIM software on a DC microgrid with two DGs. Different scenarios are studied to present the performance of the proposed method under different operating conditions.
Conclusion: The results indicate the capability of the proposed method for voltage control and load sharing in DC microgrids.
Keywords
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article