Document Type : Original Research Paper

Authors

Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

Background and Objectives: Fast-tracking of reference trajectory and performance improvement in the presence of dynamic and kinematic uncertainties is of paramount importance in all robotic applications. This matter is even more important in the case of cable-driven parallel robots due to the flexibility of the cables. Furthermore, cables are limited in the sense that they can only apply tensile forces, for this reason, feedback control of such robots becomes more challenging than conventional parallel robots.
Methods: To address these requirements for a suspended cable-driven parallel robot, in this paper a novel adaptive fast terminal sliding mode controller is proposed and then the stability of the closed-loop system is proven. In the proposed controller, a nonlinear term as a fractional power term is used to guarantee the convergent response at a finite time.
Results: At last, to show the effectiveness of the proposed controller in tracking the reference trajectory, simulations and the required experimental implementation is performed on a suspended cable-driven robot. This robot, named ARAS-CAM, has three degrees of transmission freedom.
Conclusion: The obtained experimental results confirm the suitable performance of this method for cable robots in the presence of dynamic uncertainties.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image