Document Type : Original Research Paper
Authors
1 Department of Electrical Engineering, Faculty of Engineering, Fasa University, Fasa, Iran
2 Department of Electrical Engineering, Islamic Azad University, Shiraz Branch, Shiraz, Iran
Abstract
Background and Objectives: A robot arm is a multi-input multi-output and non-linear system that has many industrial applications. Parameter uncertainties and external disturbances attenuate the performance of this system and a controller design is hence necessary to overcome them.
Methods: In this paper, the interval Type II Fuzzy fractional-order proportional integral differential (IT2FO-FPID) controller is designed to control a robot arm with 2 degrees of freedom (two-link robot arm). Whale optimization algorithm (WOA) is used to determine the optimal value of controller parameters. The performance of IT2FO-FPID is compared with PID, fractional-order PID (FOPID) and Fuzzy FOPID whose parameters are determined by WOA. The performance of IT2FO-FPID whose parameters are determined by WOA, genetic algorithm, and particle swarm optimization methods are compared.
Results: Quantitative and qualitative results of simulations indicate performance improvement with the IT2FO-FPID controller. The ability of WOA in optimizing the parameters of the IT2FO-FPID controller is demonstrated.
Conclusion: Sensitivity analysis and the study of the effect of parameter variations and disturbances confirm the robust performance of WOA-based IT2FO-FPID.
Keywords
- Fractional order proportional integral differential
- Interval type 2 fuzzy
- Whale optimization algorithm
- Genetic algorithm
- Particle swarm Optimization
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article