Document Type : Original Research Paper
Author
Department of Surveying Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
Abstract
Background and Objectives: High resolution multi-spectral (HRMS) images are essential for most of the practical remote sensing applications. Pan-sharpening is an effective mechanism to produce HRMS image by integrating the significant structural details of panchromatic (PAN) image and rich spectral features of multi-spectral (MS) images.
Methods: The traditional pan-sharpening methods incur disadvantages like spectral distortion, spatial artifacts and lack of details preservation in the fused image. The pan-sharpening approach proposed in this paper is based on integrating wavelet decomposition and convolutional sparse representation (CSR). The wavelet decomposition is performed on PAN and MS images to obtain low-frequency and high-frequency bands. The low-frequency bands are fused by exploring the CSR based activity level measurement.
Results: The HRMS image is restored by implementing the inverse transform on fused bands. The fusion rules are constructed, thus to transfer the crucial details from source images to the fused image effectively.
Conclusion: The proposed method produces HRMS images with rational spatial and spectral qualities. The visual outcomes and quantitative measures approve the eminence of the proposed fusion framework.
======================================================================================================
Copyrights
©2019 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
======================================================================================================
Keywords
- Remote Sensing
- Image fusion
- Pansharpening
- Discrete wavelet transform
- Convolutional Sparse representation
Main Subjects
Send comment about this article