Document Type : Original Research Paper
Authors
1 Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
2 Department of Electrical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
Abstract
Background and Objectives: To achieve significant throughput, interference alignment (IA) is an encouraging technique for wireless interference networks. In this study, we design an aligned beamformer based on the interference leakage minimization (ILM) method to reduce the interference power for a multiple-input multiple-output interference channel (MIMO-IC).
Methods: To deal with the non-convexity of ILM problem, we used a non-convex programming method (i.e., difference of convex [DC]). In this way, the interference leakage function is reformulated to a DC function including difference of two convex terms. Then, an additive function is defined that includes the DC objective function and a penalty function.
Results: We propose a novel DC-based IA algorithm that uses solutions of an upper bound of the additive function in each iteration; as the initial state for the next iteration. Through an iterative manner and for the large values of the penalty factor, the solutions of upper bound function converge to the solutions of the original DC objective function (i.e., interference leakage function).
Conclusion: In contrast to the frequent IA methods, the proposed DC-based IA algorithm updates transmit- and receive-beamformers in each iteration jointly (not alternately). Simulation results indicate that the proposed method outperforms some competitive IA algorithms by providing more throughputs and less interference leakage.
Keywords
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article