Document Type : Original Research Paper


Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran


Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem.
Methods: In this paper, a novel machine learning approach, which works in two phases, is introduced to predict the price of a stock in the next day based on the information extracted from the past 26 days. In the first phase of the method, an automatic clustering algorithm clusters the data points into different clusters, and in the second phase a hybrid regression model, which is a combination of particle swarm optimization and support vector regression, is trained for each cluster. In this hybrid method, particle swarm optimization algorithm is used for parameter tuning and feature selection. Results: The accuracy of the proposed method has been measured by 5 companies’ datasets, which are active in the Tehran Stock Exchange market, through 5 different metrics. On average, the proposed method has shown 82.6% accuracy in predicting stock price in 1-day ahead.
Conclusion: The achieved results demonstrate the capability of the method in detecting the sudden jumps in the price of a stock.


Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Shahid Rajaee Teacher Training University



Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.