Document Type : Original Research Paper

Authors

1 Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Electrical and Computer Engineering, Ashtian Branch, Islamic Azad University, Ashtian, Iran

3 Faculty of Electrical and Computer Engineering, Arak University of Technology, Arak, Iran

4 Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran

5 Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

Background and Objectives: Due to the increased sensitive loads, improving power quality in distribution grids by custom power tools is one of the important fields of electrical engineering. This paper proposes a new kind of three-phase three-wire dynamic voltage restorer (without including storage sources or DC link) and also its control method.
Methods: The proposed structure includes an AC/AC converter, low-pass filters at the input and output sides, and three-phase injection transformers. The control system is based on the combination of feedback and feedforward control that its advantages are high speed, good response quality, and very simple implementation. To overcome the harmonics raised from AC/AC converter switching on the main line, a SOGI-PLL has been used. Also, SOGI-PLL operates independently on each phase so that the asymmetric voltage variations can be identified.
Results: The proposed control method is capable to compensate the power quality problems such as voltage sag, swell, and harmonics in balanced and unbalanced conditions. The detailed modelling and design of the proposed controller are verified through computer simulations and experimental results under different operating conditions. Simulation and experimental results show that the proposed control strategy can compensate the power quality events as close as possible to the desired values under different operation modes.
Conclusion: In this paper, a three-phase three-wire dynamic voltage restorer (DVR) was assessed using direct AC/AC converters without a supply source and DC link. A control system based on combined feedback and feedforward control (CFBFFC) and SOGI-PLL has been proposed for the DVR. The simulation results on a three-phase 20kV system as well as the experimental results obtained from a single-phase 220V system verified the performance of the DVR and the control system. It was shown that this structure can compensate for 0.5pu voltage sag, above 1pu voltage swell, and all kinds of harmonic faults.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University

 

LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image