Document Type : Original Research Paper

Authors

1 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.

2 Department of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.

3 Department of Electrical and Computer Engineering, Amirkabir University of Technology, Tehran, Iran.

Abstract

Background and Objectives: Text summarization plays an essential role in reducing time and cost in many domains such as medicine, engineering, etc. On the other hand, manual summarization requires much time. So, we need an automated system for summarizing. How to select sentences is critical in summarizing. Summarization techniques that have been introduced in recent years are usually greedy in the choice of sentences, which leads to a decrease in the quality of the summary. In this paper, a non-greedily method for selecting essential sentences from a text is presented.
Methods: The present paper presents a method based on a generative adversarial network and attention mechanism called GAN-AM for extractive summarization. Generative adversarial networks have two generator and discriminator networks whose parameters are independent of each other. First, the features of the sentences are extracted by two traditional and embedded methods. We extract 12 traditional features. Some of these features are extracted from sentence words and others from the sentence. In addition, we use the well-known Skip-Gram model for embedding. Then, the features are entered into the generator as a condition, and the generator calculates the probability of each sentence in summary. A discriminator is used to check the generated summary of the generator and to strengthen its performance. We introduce a new loss function for discriminator training that includes generator output, real and fake summaries of each document. During training and testing, each document enters the generator with different noises. It allows the generator to see many combinations of sentences that are suitable for quality summaries.
Results: We evaluate our results on CNN/Daily Mail and Medical datasets. Summaries produced by the generator show that our model performs better than other methods compared based on the ROUGE metric. We apply different sizes of noise to the generator to check the effect of noise on our model. The results indicate that the noise-free model has poor results.
Conclusion: Unlike recent works, in our method, the generator selects sentences non-greedily. Experimental results show that the generator with noise can produce summaries that are related to the main subject.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image