Document Type : Original Research Paper

Authors

Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran.

Abstract

Background and Objectives: The use of two-dimensional materials in the photodetector fabrication has received much attention in recent years. Graphene is a two-dimensional material that has been extensively researched to make photodetectors. The responsivity of graphene photodetectors was limited by the low optical absorption in graphene (~2.3% for single layer graphene). Therefore, graphene along with other materials has been used to fabricate a photodetector with the desired properties. The graphene is used for the improvement of the silicide platinum photodetector.
Methods: The platinum silicide photodetector with graphene has been experimentally fabricated and characterized, and all steps of the device fabrication and the characterization are completely provided in addition to required equations for device analysis is completely provided. A graphene layer is transferred on the platinum silicide layer, and the graphene layer creates the photoconductor gain in the platinum silicide photodetector.
Results: In the proposed device, near-infrared light is detected in the platinum silicide, and by placing a layer of graphene on the platinum silicide, the optical current and responsivity increase compared to the platinum silicide photodetector without graphene. Experimental results show that the optical current, external quantum efficiency, and responsivity increase in the platinum silicide photodetector with graphene. The graphene not only functions as the charge transport channel, but also works as a photoconductor.
Conclusion: The optical current and responsivity are increased by the platinum silicide photodetector with graphene. In our photodetector, the highest responsivity is 120 mA/W in the 1310 nm wavelength, and the optical current is 100 nA at the applied voltage of 8 V. Our photodetector has optical current, responsivity, and external quantum efficiency twice as much as platinum silicide photodetector. Experimental results show the good performance of graphene with platinum silicide photodetector.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image