Document Type : Original Research Paper

Author

Department of Computer Systems Architecture, Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.

Abstract

Background and Objectives: Considering the fast growing low-power internet of things, the power/energy and performance constraints have become more challenging in design and operation time. Static and dynamic variations make the situation worse in terms of reliability, performance, and energy consumption. In this work, a novel slack measurement circuit is proposed to have precise frequency management based on timing violation measurement.
Methods: Proposed slack measurement circuit is based on measuring the delay difference between the edge clock pulse and possible transition on path end-points (primary outputs of design). The output of proposed slack monitoring circuits is a digital code related to the current state of target critical path delay. In order to convert this digital code to equivalent delay difference, the delay of a reference gate is mandatory which is basic unit in proposed monitor. This monitor enables the design to have more precise and efficient frequency management, while maintaining the correct functionality regarding low-power mode.
Results: Applying this method on a MIPS processor reduces the amount of performance penalty and recovery energy overhead up to 30% with only 2% additional hardware. Results for benchmark applications in low-power mode, show 7-30% power improvement in normal execution mode. If the application is resilient against occurred errors duo to timing violations, proposed method achieves 20-60% power reduction considering approximate computation as long as application is showing resilience. The performance of proposed method depends on the degree of application resilience against the timing errors. In order to keep generality of propsoed monitor for different applications, the resilience threshold is user programmable to configure according to the requirements of each application.
Conclusion: The results show that precise frequency scheduling is more energy/power efficient in static and dynamic variation management. Utilizing a proper monitor capable of measureing the amount of violation will help to have finer frequency management. At the other hand, this method will help to use the resilience of application according to estimation about the possible error value based on measured vilation amount.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image