Document Type : Original Research Paper

Authors

1 Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

Abstract

Background and Objectives: Several service identification methods have been proposed to identify services using a business process-based strategy. However, these methods are still not accurate enough and adequately automated and thus need improvements. The present study addresses this gap by proposing a new semi-automated combinational method that applies process mining techniques and simultaneously considers different aspects of the business domain (e.g., goal and data). We argue that this method facilitates service identification more comprehensively and accurately and helps enhance organizational performance and lower cost structure.
Methods: Our method includes three Phases. In the first phase, the system log is inspected, and the running business process is extracted using process mining techniques. After validating this model, we create a goal and data model in the next phase. In the third phase, we establish connections between the introduced models by defining some matrices. These connections are of two types: structural and conceptual. Finally, we propose a couple of algorithms that lead to the identification of services.
Results: We evaluate the utility of our proposed method by conducting a case study and using the experts’ opinions from different perspectives as follows: (1) assessing the accuracy and reusability of the identified services, (2) appraising the efficiency of employing this method in more complex processes, (3) calculating the cohesion to coupling ratio, and (4) assessing the performance of the method and other service quality measures. The results indicate that the average accuracy of this method is about 12 % higher than the previously identified methods for both simple and complex processes. Additionally, it empirically proves that using the process mining techniques improves the service identification considerably (8%). Moreover, according to the experts’ opinions, the combination of goal and data model and process mining has increased the performance by 8%. In comparison, the cohesion to coupling ratio demonstrated a 7% increase compared to other methods. In sum, we conclude that this method is an advanced and reliable way of service identification regardless of the process size and the complexity.
Conclusion: The findings reveal that considering different aspects of business processes together and using process mining techniques improves the ratio of cohesion to coupling and accuracy of the identified services. Adherence to this approach enables companies to mine their business processes, modify them, and quickly identify services with higher performance. Besides, using this method provides a semi-automated and more effective way of service identification

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image