Document Type : Original Research Paper

Author

Department of Electrical Engineering, Arak University of Technology, Arak, Iran.

Abstract

Background and Objectives: Cylindrical scanning technique is a well-established indirect measurement method to characterize a wide range of antenna patterns such as fan-beam antennas and phased array antennas with versatile radiation patterns.
Methods: Cylindrical scanning technique which is based on the nearfield-to-far-field transformation based on cylindrical mode coefficients (CMCs), cannot predict the antenna radiation pattern with a very narrow beamwidth in the azimuth plane accurately, because a remarkable error occurs during the calculation of the derivative of high-order Hankel functions in the CMCs extraction. We aim to address this issue and introduce a simple yet rigorous technique namely the sequential sampling method (SSM) in conjunction with the two-dimensional Fast Fourier Transform (2D-FFT) to efficiently calculate the far-field radiation pattern of a super-directive antenna with a very narrow beamwidth in the azimuth plane. Briefly, the SSM offers several sequences of progressive azimuth angles and the corresponding order of Hankel functions in such a way that CMCs fully span 360 degrees of azimuth angles (φ) in the cylindrical coordinate system in each sequence. Afterward, by putting the far-field obtained by these sequences together, the final radiation pattern will have a high angular resolution. This technique can also be applied to determine the necessary criteria in the data acquisition step which should be satisfied to precisely measure the radiation pattern of super-directive antennas. These criteria are the maximum acceptable sampling resolution and the minimum value of the required azimuth angle (φ) in the data acquisition step if the far-field pattern is merely desired on the front side of the antenna.
Results: For verifications, the far-field radiation pattern of an electrically large slot array antenna including 81×15 slots is calculated at 8.75 GHz by the proposed technique and the results are compared with the array theory. The results show that the azimuth pattern can accurately be measured as small as 0.1° resolution by the SSM.
Conclusion: By comparing the results obtained by the proposed method and the traditional cylindrical scanning method, it can be inferred that the far-field pattern of an antenna with narrow beamwidth in the azimuth plane can easily be characterized by a cylindrical scanning system without any huge computational burden

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University

[11] A. Capozzoli, C. Curcio, A. Liseno, "Optimized near field antenna measurements in the cylindrical geometry," presented at the European Conf on Antennas. Propag, EUCAP., Lisbon, Portugal, 2015.

LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image