Document Type : Original Research Paper
Authors
1 Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran.
2 Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran, and Faculty of Computer Engineering and Information Technology, Payam Noor University, Tehran, Iran.
3 Department of Computer Engineering, Rasht Branch, Islamic Azad,University, Rasht, Iran.
Abstract
Background and Objectives: Embedding social networks has attracted researchers’ attention so far. The aim of network embedding is to learn a low-dimensional representation of each network vertex while maintaining the structure and characteristics of the network. Most of these existing network embedding methods focus on only preserving the structure of networks, but they mostly ignore the semantic and centrality-based information. Moreover, the vertices selection has been done blindly (greedy) in the existing methods.
Methods: In this paper, a comprehensive algorithm entitled CSRW stands for centrality, and a semantic-based random walk is proposed for the network embedding process based on the main criteria of the centrality concept as well as the semantic impact of the textual information of each vertex and considering the impact of neighboring nodes. in CSRW, textual analysis based on the BTM topic modelling approach is investigated and the final display is performed using the Skip-Gram model in the network.
Results: The conducted experiments have shown the robustness of the proposed method of this paper in comparison to other existing classical approaches such as DeepWalk, CARE, CONE, COANE, and DCB in terms of vertex classification, and link prediction. And in the criterion of link prediction in a Subgraph with 5000 members, an accuracy of 0.91 has been reached for the criterion of closeness centrality and is better than other methods.
Conclusion: The CSRW algorithm is scalable and has achieved higher accuracy on larger datasets.
Keywords
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article