[1] K. Kawamura, and T. Tanaka, “Study on the Improvement of Measurement Accuracy in GPS,” 2006 SICE-ICASE International Joint Conf., pp. 1372-1375.
[2] A. Indriyatmoko, T. Kang, Y.J. Lee, G.I. Jee, Y.B. Cho and J. Kim, “Artificial Neural Networks for Predicting DGPS Carrier Phase and Pseudo-Range Correction,” Journal of GPS Solutions, vol. 12, no. 4, pp. 237-247, 2008.
[3] M. R. Mosavi and H. Nabavi, “Improving DGPS Accuracy using Neural Network Modelling,” Australian Journal of Basic and Applied Sciences, vol. 5, no. 5, pp. 848-856, 2011.
[4] M. R. Mosavi, “An Adaptive Correction Technique for DGPS using Recurrent Wavelet Neural Network,” 2007 IEEE Spectrum, pp. 3029-3033.
[5] M. H. Refan, K. Mohammadi and M.R. Mosavi, “Improvement on low cost positioning sensor accuracy,” 2003 IEEE conf. on sensors, Kuala Lumpur, Malaysia, pp. 9–14.
[6] M. R. Mosavi, “Comparing DGPS Corrections Prediction using Neural Network, Fuzzy Neural Network, and Kalman Filter,” Journal of GPS Solutions, vol. 10, no. 2 ,pp.97-107, 2006.
[7] R. Duvigneau and M. Visonneau, “Hybrid Genetic Algorithms and Arti_cial Neural Networks for Complex Design Optimization in CFD,” International journal for numerical methods in fluids, vol. 44, no. 11, 2004.
[8] P. K. Enge, R. M Kalafus and M. F. Ruane, “Differential Operation of the Global Positioning System,” IEEE Communications Magazine, vol. 26, no. 7, pp. 48-60, July 1988.
[9] DJ. Jwo, CC. Lai, “Neural network-based GPS GDOP approximation and classification,” Journal of GPS Solutions, vol. 11, no. 1, pp. 51–60. 2007.
[10] Ch. T. Chiang, J. Sh. Hsu, and Ch. Y. Hsieh, “Improvement in DGPS Accuracy Using Recurrent S_CMAC_GBF,” World Academy of Science, Engineering and Technology, Vol. 55, pp. 422-427, July 2009.
[11] B.H.M. Sadeghi, “ABP-neural network predictor model for plastic injection molding process,” J. Mater. Process. Technol. Vol. 103, no. 3, pp.411–416, 2000.
[12] C.R. Chen, H.S. Ramaswamy, “Modeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithms,” J. Food Eng. Vol. 53, no. 3, pp. 209–220, 2002.
[13] T.T. Chow, G.Q. Zhang, Z. Lin, C.L. Song, “Global optimization of absorption chiller system by genetic algorithm and neural network,” Energy Build. Vol. 34, no. 1, pp. 103–109, 2002.
[14] D.F. Cook, C.T. Ragsdale, R.L. Major, “Combining a neural network with a genetic algorithm for process parameter optimization,” Eng. Appl. Artif. Intell. Vol. 13, no. 4. pp. 391– 396, 2000.
[15] L. Rigal and L. Truffet, “A new genetic algorithm specifically Referenced on mutation and selection,” Advances in Applied Probability, Vol 39, 141-161, 2007.
[16] K. Okyay, E Alpaydin. E. Xu, L. (Eds.) Springer, “Artificial Neural Networks and Neural Information,” Vol. 2714 ISBN 3540404082, 2003.
[17] M. NirmalaDevi, N. Mohankumar and M. Karthick, “Design of Genetically Evolved Artificial Neural Network Using Enhanced Genetic Algorithm,” International Journal of Recent Trends in Engineering, Vol. 1, no. 2, May 2009.
[18] S.L.B. Woll, D.J. Cooper, “Pattern-based closed-loop quality control for the injection molding process,” Polym. Eng. Sci. vol. 37, no. 5, pp. 801–812 1997.
[19] R. H. Christopher, A. J. Jeffery, G. K. Michael. The Intranet Architecture: A Genetic Algorithm for Function Optimization: A MATLAB Implementation. Available: www.ie.ncsu.edu/mirage
[20] S. Alla, A. Aulia, S. Kumar and R. Garg, “Using Hybrid GA-ANN to Predict Biological Activity of HIV Protease Inhibitors,” 2008 IEEE CIMCB.
[21] Ms. Dharmistha, D. Vishwakarma, “Genetic Algorithm based Weights Optimization of Artificial Neural Network,” International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 1, no. 3, August 2012.
[22] Sh. Changyu, W.Lixia, L. Qian, “Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method,” Journal of Materials Processing Technology 183, pp. 412–418, 2007.
Send comment about this article