Document Type : Original Research Paper


Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.


Background and Objectives: Re-identifying individuals due to its capability to match a person across non-overlapping cameras is a significant application in computer vision. However, it presents a challenging task because of the large number of pedestrians with various poses and appearances appearing at different camera viewpoints. Consequently, various learning approaches have been employed to overcome these challenges. The use of methods that can strike an appropriate balance between speed and accuracy is also a key consideration in this research.
Methods: Since one of the key challenges is reducing computational costs, the initial focus is on evaluating various methods. Subsequently, improvements to these methods have been made by adding components to networks that have low computational costs. The most significant of these modifications is the addition of an Image Re-Retrieval Layer (IRL) to the Backbone network to investigate changes in accuracy.
Results: Given that increasing computational speed is a fundamental goal of this work, the use of MobileNetV2 architecture as the Backbone network has been considered. The IRL block has been designed for minimal impact on computational speed. By examining this component, specifically for the CUHK03 dataset, there was a 5% increase in mAP and a 3% increase in @Rank1. For the Market-1501 dataset, the improvement is partially evident. Comparisons with more complex architectures have shown a significant increase in computational speed in these methods.
Conclusion: Reducing computational costs while increasing relative recognition accuracy are interdependent objectives. Depending on the specific context and priorities, one might emphasize one over the other when selecting an appropriate method. The changes applied in this research can lead to more optimal results in method selection, striking a balance between computational efficiency and recognition accuracy.


Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Shahid Rajaee Teacher Training University



Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.