Document Type : Original Research Paper


Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran.


Background and Objectives: Freehand sketching is an easy-to-use but effective instrument for computer-human connection. Sketches are highly abstract to the domain gap, that exists between the intended sketch and real image. In addition to appearance information, it is believed that shape information is also very efficient in sketch recognition and retrieval.
Methods: In the realm of machine vision, comprehending Freehand Sketches has grown more crucial due to the widespread use of touchscreen devices. In addition to appearance information, it is believed that shape information is also very efficient in sketch recognition and retrieval. The majority of sketch recognition and retrieval methods utilize appearance information-based tactics. A hybrid network architecture comprising two networks—S-Net (Sketch Network) and A-Net (Appearance Network)—is shown in this article under the heading of hybrid convolution. These subnetworks, in turn, describe appearance and shape information. Conversely, a module known as the Conventional Correlation Analysis (CCA) technique module is utilized to match the range and enhance the sketch retrieval performance to decrease the range gap distance. Finally, sketch retrieval using the hybrid Convolutional Neural Network (CNN) and CCA domain adaptation module is tested using many datasets, including Sketchy, Tu-Berlin, and Flickr-15k. The final experimental results demonstrated that compared to more sophisticated methods, the hybrid CNN and CCA module produced high accuracy and results.
Results: The proposed method has been evaluated in the two fields of image classification and Sketch Based Image Retrieval (SBIR). The proposed hybrid convolution works better than other basic networks. It achieves a classification score of 84.44% for the TU-Berlin dataset and 82.76% for the sketchy dataset. Additionally, in SBIR, the proposed method stands out among methods based on deep learning, outperforming non-deep methods by a significant margin.
Conclusion: This research presented the hybrid convolutional framework, which is based on deep learning for pattern recognition. Compared to the best available methods, hybrid network convolution has increased recognition and retrieval accuracy by around 5%. It is an efficient and thorough method which demonstrated valid results in Sketch-based image classification and retrieval on TU-Berlin, Flickr 15k, and sketchy datasets.


Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Shahid Rajaee Teacher Training University


Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.