Document Type : Original Research Paper
Authors
Department of computer and data sciences, Faculty of mathematical sciences , Shahid Beheshti University, Tehran, Iran.
Abstract
Background and Objectives: Cadastral boundary detection deals with locating the boundary of the ownership and use of land. Recently, there has been high demand for accelerating and improving the automatic detection of cadastral mapping. As this problem is in its starting point, there are few researches using deep learning algorithms.
Methods: In this paper, we develop an algorithm with a Mask R-CNN core followed with geometric post-processing methods that improve the quality of the output. Many researches use classification or semantic segmentation but our algorithm employs instance segmentation. Our algorithm includes two parts, each of which consists of a few phases. In the first part, we use Mask R-CNN with the backbone of a pre-trained ResNet-50 on the ImageNet dataset. In the second part, we apply three geometric post-processing methods to the output of the first part to get better overall output. Here, we also use computational geometry to introduce a new method for simplifying lines which we call pocket-based simplification algorithm.
Results: We used 3 google map images with sizes 4963 × 2819, 3999 × 3999, and 5520 × 3776 pixels. And divide them to overlapping and non-overlapping 400×400 patches used for training the algorithm. Then we tested it on a google map image from Famenin region in Iran. To evaluate the performance of our algorithm, we use popular metrics Recall, Precision, and F-score. The highest Recall is 95%, which also maintains a high precision of 72%. This results in an F-score of 82%.
Conclusion: The idea of semantic segmentation to derive boundary of regions, is new. We used Mask R-CNN as the core of our algorithm, that is known as a very suitable tools for semantic segmentation. Our algorithm performs geometric post-process improves the f-score by almost 10 percent. The scores for a region in Iran containing many small farms is very good.
Keywords
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article