Document Type : Original Research Paper
Authors
1 Electrical Engineering Department, Faculty of Electrical and Computer Engineering, Urmia university, Urmia, Iran.
2 Electrical Engineering Department, Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran.
Abstract
Background and Objectives: Distributed generations (DGs) based on renewable energy, such as PV units, are becoming more prevalent in distribution networks due to technical and environmental benefits. However, the intermittency and uncertainty of these sources lead to technical and operational challenges. Energy storage application, uncertainty analysis, and network reconfiguration are apt therapies to resist these challenges.
Methods: Energy management of modern, smart, and renewable-penetrated distribution networks is tailored here considering the uncertainties correlations. Network operation costs including switching operations, the expected energy not served (EENS) index as the reliability objective, and the node voltage deviation suppression as the technical objective are mathematically modeled. Multi-objective particle swarm optimization (MOPSO) is considered as the optimization engine. Scenario generation method and Nataf transformation are used in probabilistic evaluations of the problem. Moreover, the technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) is deployed to make a final balance between different objectives to yield a unified solution.
Results: To show the effectiveness of the proposed approach, the IEEE 33-node distribution network is put under extensive simulations. Different cases are simulated and interrogated to assess the performance of the proposed model.
Conclusion: For different objectives dealing with different aspects of the network, remarkable achievements are attained. In brief, the final solution shows 4.50% decrease in operation cost, 13.07% improvement in reliability index, and 18.85% reduction in voltage deviation compared to the initial conditions.
Keywords
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article