Document Type : Original Research Paper

Authors

Department of Electrical Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.

10.22061/jecei.2024.11251.782

Abstract

Background and Objectives: The combination of multiple-input-multiple-output (MIMO) with a Visible light communication (VLC) system leads to a higher speed of data transmission named the MIMO-VLC system. In multi-user (MU) MIMO-VLC, an LED array transmits signals to users. These signals are categorized as signals of private information for each user and signals of public information for all users.
Methods: In this research, we design an omnidirectional precoding to transmit the signals of public information in the MU-MIMO-VLC network. We aim to maximize the achievable rate which leads to maximizing the received mean power at the possible location of the users. Besides maximizing the achievable rate, we consider equal mean transmission power constraints in all LEDs to achieve higher power efficiency of the power amplifiers used in the LED array. Based on this, we formulate an optimization problem in which the constraint is in the form of a manifold, and utilize a gradient method projected on the manifold to solve the problem.
Results: Simulation results indicate that the proposed omnidirectional precoding can achieve superior received mean power besides more than 10x bit error rate reduction compared to the classical form without precoding utilization.
Conclusion: In this research, we proposed an omnidirectional precoding for transmitting the public signals in the MU-MIMO-VLC system. The proposed optimization problem maximizes the received mean power constrained with equal transmission mean power of LEDs in the array.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image