Document Type : Original Research Paper

Authors

Faculty of Electrical Engineering - Sari Branch, Islamic Azad University, Sari, Iran.

10.22061/jecei.2025.11632.823

Abstract

Background and Objectives: A Time-to-Digital Converter (TDC) is a fundamental electronic component that converts time intervals into digital representations. It plays a critical role in high-precision applications such as particle physics experiments, time-of-flight measurements, and the processing of high-frequency signals in communication systems. This paper presents a comprehensive study on the design and simulation of two innovative low-power TDC architectures.
Methods: The approach introduces a novel low-power D Flip-Flop (D-FF) circuit using transmission gates (TG) and CMOS inverters to reduce power consumption while maintaining high performance. Specialized low-power delay cells are proposed for Flash TDC implementation. Detailed simulations were conducted using Cadence software with a 0.18 μm CMOS fabrication process at a supply voltage of 1.8 V.
Results: The results demonstrate significant improvements in power efficiency and performance metrics, indicating the potential of the proposed TDC designs for future applications requiring precise temporal measurements. The Figure of Merit (FOM) values of the two proposed structures are 0.033 and 0.020, respectively.
Conclusion: Power consumption in TDCs is a critical factor, as it directly influences the overall efficiency of electronic systems. Reducing power consumption can lead to decreased energy use, improved thermal management, and an extended lifespan for devices. Conversely, higher power consumption can generate excessive heat, which can negatively impact the system's performance and reliability. Thus, it is vital to strike an optimal balance between accuracy and power consumption in TDCs to enhance the longevity of electronic devices. This paper presents the design of delay cell circuits and a D-FF using a 0.18 µm CMOS process with a 1.8 V supply voltage. The power consumption of the proposed delay cells has been minimized through the application of the body bias technique. The performance of the delay cell has been evaluated in flash TDC circuits, and the results demonstrate the effective performance of the proposed structures.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image