Document Type : Original Research Paper

Authors

Department of Artificial Intelligence, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.

10.22061/jecei.2025.11348.814

Abstract

Background and Objectives: Developing efficient task-oriented dialogue systems capable of handling multilingual interactions is a growing area of research in natural language processing (NLP). In this paper, we propose SenSimpleDS, a deep reinforcement learning-based joint task-oriented dialogue system, designed for multilingual conversations.
Methods: The system utilizes a deep Q-network and the SBERT model to represent the dialogue environment. We introduce two variants, SenSimpleDS+ and SenSimpleDS-NSP, which incorporate modifications in the ε-greedy method and leverage next sequence prediction (NSP) using BERT to refine the reward function. These methods are evaluated on datasets in English, Persian, Spanish, and German, and compared with baseline methods such as SimpleDS and SCGSimpleDS.
Results: Our experimental results demonstrate that the proposed methods outperform the baselines in terms of average collected rewards, requiring fewer learning steps to achieve optimal dialogue policies. Notably, the incorporation of NSP significantly improves performance by optimizing reward collection. The multilingual SenSimpleDS further showcases the system’s ability to function across languages using a random forest classifier for language detection and MPNet for environment construction. In addition to system evaluations, we introduce a new Persian dataset for task-oriented dialogue in the restaurant domain, expanding the resources available for developing dialogue systems in low-resource languages.
Conclusion: SenSimpleDS, a deep reinforcement learning-based joint task-oriented dialogue system, demonstrates superior performance over baseline methods by leveraging deep Q-networks, SBERT. The integration of next sequence prediction (NSP) significantly enhances reward optimization, enabling faster convergence to optimal dialogue policies. This work establishes a foundation for future research in multilingual dialogue systems, with potential applications across diverse service domains.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image