Document Type : Original Research Paper

Authors

Department of Computer Engineering, Hamedan University of Technology, Hamedan, Iran.

Abstract

Background and Objectives: Facial recognition technology has become a reliable solution for access control, augmenting traditional biometric methods. It primarily focuses on two core tasks: face verification, which determines whether two images belong to the same individual, and face identification, which matches a face to a database. However, facial recognition still faces critical challenges such as variations in pose, illumination, facial expressions, image noise, and limited training samples per subject.
Method: This study employs a Siamese network based on the Xception architecture within a transfer learning framework to perform one-shot face verification. The model is trained to compare image pairs rather than classify them individually, using deep feature extraction and Euclidean distance measurement, optimized through a contrastive loss function.
Results: The proposed model achieves high verification accuracy on benchmark datasets, reaching 97.6% on the Labeled Faces in the Wild (LFW) dataset and 96.25% on the Olivetti Research Laboratory (ORL) dataset. These results demonstrate the model’s robustness and generalizability across datasets with diverse facial characteristics and limited training data.
Conclusion: Our findings indicate that the Siamese-Xception architecture is a robust and effective approach for facial verification, particularly in low-data scenarios. This method offers a practical, scalable solution for real-world facial recognition systems, maintaining high accuracy despite data constraints.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image