Document Type : Original Research Paper

Authors

Department of Computer Engineering, Yazd University, Yazd, Iran.

Abstract

Background and Objectives: In Natural Language Processing (NLP), sentiment analysis is crucial for understanding and extracting aspects and opinions expressed in textual data. Recent methods have emphasized determining polarity in multi-domain sentiment analysis while giving less attention to aspect and opinion extraction. Furthermore, the terms that convey aspects and opinions may have different importance in different domains, and this difference should be considered to enhance the extraction of aspect-opinion pairs.
Methods: To address these challenges, we propose a Weighted Words Multi-Domain (WWMD) model for aspect-opinion pairs extraction, consisting of a self-attention mechanism and a dense network. The self-attention mechanism extracts each word's importance according to the sentence's overall meaning. The dense network is used for domain prediction. It assigns greater weight to words relevant to each domain, which leads to considering the different significance of terms across various contexts. Adding an attention mechanism to the domain module allows for a clearer understanding of different aspects and opinions across various domains. We utilize a two-channel approach, one channel extracts aspects and opinions, while the other extracts the relationships between them. The weighted words extracted by our model are simultaneously considered as the input for both channels.
Results: Using weighted words specific to each domain, improves the model output.
Conclusion: Evaluation results on benchmark datasets demonstrate the superiority of the proposed model compared to state-of-the-art techniques.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image