Document Type : Original Research Paper
Authors
Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran.
Abstract
Background and Objectives: Unmanned Aerial Vehicles (UAVs) face significant challenges in navigating narrow passages within GPS-denied environments due to sensor and computational limitations. While deep reinforcement learning (DRL) has improved navigation, many methods rely on costly sensors like depth cameras or LiDAR. This study addresses these issues using a vision-based DRL framework with a monocular camera for autonomous UAV navigation.
Methods: We propose a DRL-based navigation system utilizing Proximal Policy Optimization (PPO). The system processes a stack of grayscale monocular images to capture short-term temporal dependencies, approximating the partially observable environment. A custom reward function encourages trajectory optimization by assigning higher rewards for staying near the passage center while penalizing further distances. The navigation system is evaluated in a 3D simulation environment under a GPS-denied scenario.
Results: The proposed method achieves a high success rate, surpassing 97% in challenging narrow passages. The system demonstrates superior learning efficiency and robust generalization to new configurations compared to baseline methods. Notably, using stacked frames mitigates computational overhead while maintaining policy effectiveness.
Conclusion: Our vision-based DRL approach enables autonomous UAV navigation in GPS-denied environments with reduced sensor requirements, offering a cost-effective and efficient solution. The findings highlight the potential of monocular cameras paired with DRL for real-world UAV applications such as search and rescue and infrastructure inspection. Future work will extend the framework to obstacle avoidance and general trajectory planning in dynamic environments.
Keywords
- Deep Reinforcement Learning
- Obstacle Avoidance
- Trajectory Planning
- Autonomous Navigation
- Unmanned Aerial Vehicle
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article