Document Type : Original Research Paper

Authors

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran.

10.22061/jecei.2025.11563.815

Abstract

Background and Objectives: Unmanned Aerial Vehicles (UAVs) face significant challenges in navigating narrow passages within GPS-denied environments due to sensor and computational limitations. While deep reinforcement learning (DRL) has improved navigation, many methods rely on costly sensors like depth cameras or LiDAR. This study addresses these issues using a vision-based DRL framework with a monocular camera for autonomous UAV navigation.
Methods: We propose a DRL-based navigation system utilizing Proximal Policy Optimization (PPO). The system processes a stack of grayscale monocular images to capture short-term temporal dependencies, approximating the partially observable environment. A custom reward function encourages trajectory optimization by assigning higher rewards for staying near the passage center while penalizing further distances. The navigation system is evaluated in a 3D simulation environment under a GPS-denied scenario.
Results: The proposed method achieves a high success rate, surpassing 97% in challenging narrow passages. The system demonstrates superior learning efficiency and robust generalization to new configurations compared to baseline methods. Notably, using stacked frames mitigates computational overhead while maintaining policy effectiveness.
Conclusion: Our vision-based DRL approach enables autonomous UAV navigation in GPS-denied environments with reduced sensor requirements, offering a cost-effective and efficient solution. The findings highlight the potential of monocular cameras paired with DRL for real-world UAV applications such as search and rescue and infrastructure inspection. Future work will extend the framework to obstacle avoidance and general trajectory planning in dynamic environments.

Keywords

Main Subjects


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image