Document Type : Original Research Paper

Authors

Department of Electrical Engineering, Hamedan University of Technology, Hamedan, Iran.

Abstract

Background and Objectives: Impedance source networks have gained significant attention in electrical energy conversion due to their ability to overcome the limitations of conventional methods. While existing impedance-based converters offer various advantages, challenges such as voltage gain limitations and component stress remain. This study introduces an advanced ultra-gain enhanced A-source (UGEA-S) DC/DC converter incorporating switched-capacitor technology to address these concerns and significantly improve voltage gain.
Methods: The proposed UGEA-S converter is designed to enhance energy conversion efficiency while minimizing voltage stress on switching elements. The topology integrates switched-capacitor techniques to achieve superior voltage gain, reducing reverse recovery issues in diodes and maintaining a continuous input current. A thorough theoretical analysis is conducted to explore its operational principles and steady-state behavior. Comparative assessments with other recently developed converters further highlight its distinct performance attributes. Additionally, MATLAB/Simulink simulations and experimental results are performed to validate the converter’s functionality under practical operating conditions.
Results: Experimental, simulation and numerical analysis confirm that the proposed UGEA-S converter achieves an ultra-high voltage gain of up to 8× (480 V output from a 60 V input) while maintaining low voltage stress across switching components. The MOSFET experiences a peak voltage of 230 V and a current of 28 A, well within safe operating limits. Diodes D1–D4 exhibit voltage stresses ranging from 230 V to 520V, with average currents between 2.65 A and 20.3 A. The input inductor sustains a continuous current of 19.5 A, validating the converter’s smooth current profile. Efficiency measurements show a peak of 96.93% at 230 W output, with performance remaining above 92% even at full 1 kW load. These results demonstrate the converter’s resilience under dynamic conditions and its suitability for high-performance applications such as electric vehicles and renewable energy systems.
Conclusion: The UGEA-S converter offers a robust and innovative solution for high-gain DC/DC conversion, addressing key limitations of conventional designs. Its exceptional voltage gain, reduced voltage stress, and stable current regulation make it a promising candidate for advanced energy systems. The findings underscore the converter’s feasibility for real-world applications, particularly in electric vehicle power systems. Future research can further optimize its design for enhanced efficiency and broader scalability.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image