Document Type : Original Research Paper
Authors
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran.
Abstract
Background and Objectives: Multi-object tracking in dense, multi-camera environments remains challenging due to occlusions, lighting variations, and fragmented trajectories. While existing methods rely on hierarchical two-step approaches or complex Bayesian filters, they often fail to fully exploit spatio-temporal correlations or to approach global consistency across cameras and frames. This study aims to address these limitations by proposing a novel graph-based deep learning model for continuous person tracking that independently optimizes spatial and temporal associations.
Methods: The proposed model decomposes multi-camera tracking into two tasks: temporal association (linking objects across frames using velocity and time) and spatial association (aligning objects from multiple viewpoints). A spatio-temporal graph structure is constructed, with nodes representing detected objects and edges encoding relationships. Message Passing Networks (MPNs) iteratively update node and edge features, while a graph consensus fusion module merges spatial and temporal graphs for robust tracking. The model is trained using Focal Loss and evaluated on the Wildtrack and CAMPUS datasets.
Results: The model achieves state-of-the-art performance, with a MOTA score of 85.5% on Wildtrack and 77.4–87.4% on CAMPUS subsets. Key improvements include a 100% MT (mostly tracked) rate and 0% ML (mostly lost) rate on CAMPUS, demonstrating exceptional robustness in occluded and crowded scenes. The IDF1 score (87.2%) highlights superior identity preservation. The decoupled design reduces graph size, which improves scalability.
Conclusion: By decoupling spatial and temporal associations and leveraging graph-based optimization, the proposed model significantly enhances tracking accuracy and reliability in multi-camera settings. This work provides a framework for applications like surveillance and autonomous systems, with future potential for attention mechanisms and adaptive graph integration.
Keywords
- Person tracking
- Multi-camera environment
- Deep learning
- Spatio-temporal features
- graph neural networks
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article