[1] M. F. Catedra, C. Delgado, and I. G. Diego, "New physical optics approach for an efficient treatment of multiple bounces in curved bodies defined by an impedance boundary condition," IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, pp. 728-736, 2008.
[2] F. S. de Adana, I. G. Diego, O. G. Blanco, P. Lozano, and M. F. Catedra, "Method based on physical optics for the computation of the radar cross section including diffraction and double effects of metallic and absorbing bodies modeled with parametric surfaces," IEEE Transactions on Antennas and Propagation, vol. 52, no. 5, pp. 3295-3303, 2004.
[3] J. T. Hwang, S. Y. Hong, J. H. Song, and H. W. Kwon, "'Radar cross section analysis using physical optics and its applications to marine targets," Journal of Applied Mathematics and Physics, vol. 3, pp. 166-171, 2015.
[4] F. Weinmann, "The Influence of Surface Curvature on HighFrequency RCS Simulations" The Second European Conference on Antennas and Propagation EuCAP, Edinburgh, pp. 1-5, Nov. 2007.
[5] C. Corbel, C. Bourlier, N. Pinel, and J. Chauveau, "Rough Surface RCS Measurements and Simulations Using the Physical Optics Approximation" IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 5155-5165, 2013.
[6] F. Weinmann, "Ray tracing with po/ptd for rcs modeling of large complex objects," IEEE Trans. Antennas and Propaation., vol. 54, no. 6, pp. 1797-1806, 2006.
[7] Y. An, D. Wang, R. Chen, "Improved multilevel physical optics algorithm for fast computation of monostatic radar cross section," IET Microwaves, Antennas & Propagation, vol. 8, no. 2, pp. 93-98, 2014.
[8] H. Mohammadzadeh, A. Zeidaabadi-Nezhad, and Z. H. Firouzeh, "Modified physical optics approximation and physical theory of diffraction for rcs calculation of dielectric coated pec," Antennas and Propagation Society International Symposium (APSURSI), Orlando-FL, pp. 1896 – 1897, 2013.
[9] A. Noga, "Physical optics approximation for PEC objects coated with lossy material," 21st International Conference in Radioelektronika 2011, pp. 1-3, 2011.
[10] W. C. Gibson, The Method of Moments in Electromagnetics, Chapman & Hall/CRC and Taylor & Francis Group, 2008. [11] X. J. Chen , X. W. Shi "Comments on a formulation in radar cross section," Journal of Electromagnetic Waves and Applications, vol. 21, no. 15, p. 2389-2394, 2007.
[12] J. J. Stamnes, Waves in Focal Region, IOP Publisher, 1986.
[13] L. P. Felsen, N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, 1994.
[14] J. Perez, M. F. Catedra, "Application of physical optics to the RCS computation of bodies modeled with NURBS surfaces," IEEE Transactions on Antennas and Propagation, vol. 42, no. 10, pp. 1404-1411, 1994.
[15] P. C. Lash, "Comparison of computational electromagnetic codes for prediction of low-frequency radar cross section," Master of Science, Department of Electrical and Computer Engineering, Air Force Institute of Technology, 2006.
[16] L. M. Brekhovskikh, Waves in Layered Media, 2nd ed., vol. 6, Academic Press, 1960.
[17] R. S. Elliott, Antenna Theory and Design, 2nd ed., IEEE Press, 2003.
[18] C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed., John Wiley & Sons, 2012.
[19] D. Klement, J. Preissner, and V. Stein, "Special problems in applying the physical optics method for backscatter computations of complicated objects," IEEE Transactions on Antennas and Propagation, vol. 36, no. 2, pp. 228-237, 1988.
Send comment about this article