[1] D. J. Dolezilek, “Choosing between communications processors, RTUS, and PLCS as substation automation controllers,” Schweitzer Engineering Laboratories, Inc. white paper, 2000.
[2] E. Demeter, T. S. Sidhu, and S. O. Faried, “An open system approach to power system protection and control integration,” IEEE Trans. Power Delivery, vol. 21, no. 1, pp. 30- 37, Jan. 2006.
[3] A. Apostolov, F. Auperrin, R. Passet, M. Guenego, and F. Gilles, “A distributed recording system based on IEC 61850 process bus,” in Proc. 2006 Advanced Metering, Protection, Control, Communication, and Distributed Resources Conf., pp. 57-62, Clemson, SC, USA, 2016.
[4] B. Kasztenny, D. Mcginn, S. Hodder, D. Ma, J. Mazereeuw, and M. Goraj, “Practical IEC61850-9-2 process bus architecture driven by topology of the primary equipment,” in Proc. 2008 42 CIGRE Session, pp. 24-29, Paris, France, 2008.
[5] A. Geraci. “IEEE standard computer dictionary: Compilation of IEEE standard computer glossaries,” Institute of Electrical and Electronics Engineers Inc., 1991.
[6] M. G. Kanabar and T. S. Sidhu, “Reliability and availability analysis of IEC 61850 based substation communication architectures,” presented at the IEEE Power Eng. Soc. Gen. Meeting, Calgary, Canada, 2009.
[7] B. Yunus, A. Musa, H. S. Ong, A. R. Khalid, and H. Hashim, “Reliability and availability study on substation automation system based on IEC 61850,” in Proc. 2008 IEEE Int. Conf. Power Energy, pp. 148–152, Johor Bahru, Malaysia, 2008.
[8] J. C. Tournier and T. Werner, “A quantitative evaluation of IEC61850 process bus architectures,” in Proc. 2010 IEEE Power Eng. Soc. Gen. Meeting, pp. 1-8, Providence, RI, USA, 2010.
[9] L. Andersson, K. P. Brand, C. Brunner, and W. Wimmer, “Reliability investigations for SA communication architectures based on IEC 61850,” in Proc. 2005 IEEE Power Tech, pp. 1-7, St. Petersburg, Russia, 2005.
[10] V. Skendzic, I. Ender, and G. Zweigle, “IEC 61850-9-2 Process bus and its impact on power system protection and control reliability,” in Proc. 2007 Annual Western Power Delivery Automation Conference.
[11] U. B. Anombem, H. Li, P. Crossley, R. Zhang, and C. McTaggart, “Flexible IEC 61850 process bus architecture designs to support life-time maintenance strategy of substation automation systems,” presented at the CIGRE Study Committee B5 colloquium, Korea, 2009.
[12] H. Hajian-Hoseinabadi, "Reliability and component importance analysis of substation automation systems,” Int. J. Elect. Power Energy Syst., vol. 49, no. 3, pp. 455–63, 2013.
[13] H. Hajian-Hoseinabadi, “Impacts of automated control systems on substation reliability,” IEEE Trans. Power Del., vol. 26, no. 3, pp. 1681–1691, 2011.
[14] H. Hajian-Hoseinabadi, M. E. Hamedani-Golshan, and H. A. Shayanfar, “Composite automated distribution system reliability model considering various automated substations,” Int. J. Elect. Power Energy Syst., vol. 54, pp. 211-220, 2014. [15] L. Hangtian, C. Singh, and A. Sprintson, “Reliability modeling and analysis of IEC 61850 based substation protection systems,” IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2194-2202, 2014.
[16] T. S. Sidhu, M. G. Kanabar, and P. P. Parikh, “Implementation issues with IEC 61850 based substation automation systems,” in Proc. 2008 National Power Systems Conference, pp. 473- 478, Bombay, December 2008.
[17] D. Stamatis, “Failure Mode and Effect Analysis: FMEA from theory to execution,” ASQ Quality Press, Milwaukee, 2003. [18] M. Rausand and A. Høyland, “System reliability theory: models, statistical methods, and applications,” vol. 396, John Wiley & Sons, 2004.
[19] J. Andrews and C. A. Ericson, “Fault tree and Markov analysis applied to various design complexities,” In Proc. 2000 International System Safety Conference, pp. 324-335, Fort Worth Texas, Radisson Plaza, 2000.
[20] B. W. Johnson, “Design & analysis of fault tolerant digital systems,” Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988.
[21] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla, “Improving the analysis of dependable systems by mapping fault trees into Bayesian networks,” IEEE Trans. Reliability Engineering and System Safety, vol. 71, no. 3, pp. 249-260, March 2001.
[22] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla, “Comparing fault trees and bayesian networks for dependability analysis,” in Proc. 1999 International Conference on Computer Safety, Reliability and Security, pp. 310-322, Toulouse, France, September, 1999.
[23] F. V. Jensen, “Bayesian Networks and Decision Graphs, Statistics for engineering and information science,” New York: Springer, 2001.
[24] G. M. Oliva, P. Weber, E. Levrat, and B. Iung, “Use of probabilistic relational model (PRM) for dependability analysis of complex systems,” in Proc. 2010 IFAC Symp. Large Scale Syst.: Theory Appl., pp. 501-506.
Send comment about this article