[1] K. Qing, X. Xi, S. Kai ,X. Jie, and Z. Jingmei, “A design of active damper for the deployment of solar arrays using PMSM,” in Proc. 2014 ITEC Asia. Pacific conf., Beijing, China, DOI: 10.1109/ITEC-AP.2014.6940779.
[2] P.C. Sen, “Electric motor drives and control-past, present and future,” IEEE Trans. Industrial Electronics, vol. 37, pp. 562- 575, 1990.
[3] P.M. Pelecezewski, W. Oberschelp, and U.K. Kunz, “Optimal model following control of a positioning drive system with a permanent magnet synchronous motor,” IEEE Proceeding Control Theory and Applications, Part-D, vol. 138, pp. 267-273, 1991.
[4] N. Matsui and H. Ohashi, “DSP-based adaptive control of a brushless motor,” IEEE Trans. Industry Applications, vol. 28, pp. 448-454, 1992.
[5] E. Cerruto, A. Consoli, A. Racitti, and A. Testa, “A robust adaptive controller of PM motor drives in robotic applications,” IEEE Trans. Power Electronics, vol. 10, pp. 62-71, 1992.
[6] N. Hemati, J.S. Thorp, and M.C. Leu, “Robust nonlinear control of brushless DC motors for direct-drive robotic applications,” IEEE Trans. Industrial Electronics, vol. 37, pp. 460-468, 1990.
[7] T.H. Liu and C.P.Cheng, “Controller design for a sensorless permanent magnet synchronous drives system,” IEEE. Proceedings Electrical Power Applications Part B, vol. 140, pp. 368-378.
[8] W. Xu, “Permanent Magnet Synchronous Motor with Linear Quadratic Speed Controller,” 2nd International Conference on Advances in Energy Engineering (ICAEE 2011), Bangkok, Thailand, 2011.
[9] V.F. Montagner, R.C.L.F. Oliveira, V.J.S. Leite, and P.L.D. Peres, “LMI approach for linear parameter-varying state feedback control,” in Proc. Control Theory Appl., 2005, pp. 195–201, DOI: 10.1049/ip-cta:20045117.
[10] P. Gahinet, A. Nemirovski, A.J. Laub, and M. Chilali, “LMI control toolbox for use with MATLAB,” The MathWorks, Inc., 1995.
[11] LO¨ fberg J., “YALMIP: A toolbox for modeling and optimization in MATLAB,” Proc. CACSD Conf. 2004, available at http://control.ee.ethz.ch/~joloef/yalmip.php.
[12] J. Bernussou, P.L.D. Peres, and J. Geromel, “A linear programming oriented procedure for quadratic stabilization of uncertain systems,” Syst. Control Lett., vol. 13, pp. 65–72, 1989.
[13] S. Boyd, L. EL Ghaoui, E. Feron , and V. Balakrishnan “Linear matrix inequalities in system and control theory,” vol. 15, SIAM, 1994
[14] E.S, Pyatnitskii and V.I. Skorodinskii “Numerical methods of Lyapunov function construction and their application to the absolute stability problem,” Syst. Control Lett., vol. 2, pp. 130– 135, 1982.
[15] S. Skogestad and I. Postlethwaite, “Multivariable feedback control: analysis and design,” John Wiley and Sons, 1996. [16] P. Gahinet and p. Apkarian “A linear matrix inequality approach to control,” Int. J. Robust Nonlinear Control, vol. 4, pp. 421–448, 1994.
[17] M. Chilali and P. Gahinet, “ design with pole placement constraints: an LMI approach,” IEEE Trans. Autom. Control, vol. 41, pp. 358–367, 1996
[18] W.M. Haddad and D.S. Bernstein, “Controller design with regional pole constraints,” IEEE Trans. Autom. Control, vol. 37, pp. 54–69, 1992.
[19] G. Garcia, J. Daafouz, and J. Bernussou “Output feedback disk pole assignment for systems with positive real uncertainty,” IEEE Trans. Autom. Control, vol. 41, pp. 1385–1391, 1996
Send comment about this article