Document Type : Original Research Paper


1 Department of Electrical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

2 Department of Electrical Engineering, Eslamabad-E-Gharb Branch, Islamic Azad University, Eslamabad-E-Gharb, Kermanshah, Iran.


Background and Objectives: Solar cell is an electronic device which harvest photovoltaic effect and transform light energy to electricity. An efficient double junction InGaN/CIGS solar cell can be simulated using Silvaco ATLAS software. In this study, a thin CdS top cover layer is used as the anti-reflector layer. 
Methods: To reach the current matching condition, changing the thickness of this CdS layer, we can enhance the short-circuit currents of both the top and bottom cells. To gain a desired efficiency, different design parameters, such as the doping concentrations and the thicknesses of the various layers of the cell are optimized. This cell is designed to be used in a real environmental situation.  Results: By using the appropriate parameters, and under matching conditions, the efficiency is optimized as well as the filling factor is increased. Considering the proposed structure and the simulation results, an optimum efficiency of 41.87% is achieved and also the obtained fill factor is equal to 75.16%.
Conclusion: In this paper, a new structure for an efficient double junction InGaN/CIGS solar cell, was proposed. In our proposed structure, a thin CdS layer is used as the anti-reflector layer. To get a desired efficiency, different design parameters, such as the doping concentrations and the thicknesses of various layers of the cells were optimized. 

©2018 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.


Main Subjects

[1] W. Shockley H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys., 32(3): 510-519, 1961.

[2] F. Alharbi, S. Kais, “Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence,” Renewable and Sustainable Energy Reviews, 43: 1073–1089, 2015.

[3] P. Jackson, D. Hairskos, et al., “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20 percent,” Prog. Photovolt. Res. Appl., 19(7): 894-897, 2011.

[4] O. Lundberg, M. Edoff, “The effect of Ga-grading in CIGS thin film solar cells,” Thin Solid Films, 480-481: 520-525, 2005.

[5] M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, “Multi-junction iii–v solar cells: current status and future potential,” Solar Energy, 79(1): 78–85, 2005.

[6] K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies, 2(3): 504-530, 2009.

[7] T. Sameshima, J. Takenezawa, Ma. Hasumi, T. Koida, T. Kaneko, M. Karasawa, M. Kondo “Multi junction solar cells stacked with transparent and conductive adhesive,” Japanese Journal of Applied Physics, 50: 1-4, 2011.

[8] C. Zhou, H. Chung, “Design of CdZnTe and crystalline silicon tandem junction solar cells,” IEEE Journal of Photovoltaics , 6(1): 301-308, 2016.

[9] J. P. Dutta and et al., “Design and evaluation of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized double top BSF layer,” Optik, 127(8): 4156–4161, 2016.

[10] M. Naseri, B. Farhadi, “An efficient double junction CIGS solar cell using a 4H-SiC Nano Layer, Optik, 127(20): 8646-8653, 2016.

[11] C. D. Bailie, M. G. Christoforo, et al., “Semi-transparent perovskite solar cells for tandems with silicon and CIGS,” Energy Environ. Sci, 3, 2015.

[12]  M. Saadat, M. Moradi, M. Zahedifarab, “CIGS absorber laye r with double grading Ga profile for highly efficient solar cells,” Superlattices Microstruct, 92: 303-307, 2016.

[13] S. Nacer, A. Aissat, “Simulation and optimization of current matching multi-junction InGaN solar cells,” Opt. Quantum Electron. 47: 3863-3870, 2015.

[14] V. Armel, M. Forsyth, D.R. MacFarlane, J. M. Pringle, “Organic ionic plastic crystal electrolytes; a new class of electrolyte for high efficiency solid state dye- sensitized solarcells,” Energy Environ Sci, 4(6): 2234–2239, 2011.

[15] H. Wang, X. Zhang, F. Gong, G. Zhou, and Z. S. Wang, “Novel ester-functionalized solid-state electrolyte for highly efficient all-solid-state dye-sensitized solar cells,” Adv Mater., 24(1): 121–124, 2012.

[16] I. J. Kramer, E. H. Sargent, “The architecture of colloidal quantum dot solar cells: materials to devices,” Chem Rev., 114(1): 863–882, 2013.

[17]  A. Luque, A. Martí, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv Mater., 22(2): 160–174, 2010.

[18] A. Martí, E. Antolín, P.G. Linares, I. Ramiro, I. Artacho, E. López, et al. “Six not-so- easy pieces in intermediate band solar cell research Journal of Photonics for Energy, 3(1): 1-11, 2013.

[19] M. I. Hossain, A. Bousselham, F. H. Alharbi, “Optical concentration effects on conversion efficiency of a split-spectrum solar cell system,” Journal of Physics D Applied Physics, 47(7): 075101, 2014.

[20] L. Hsu, W. Walukiewicz, “Modeling of InGaN/Si tandem solar cells”, Journal of Applied Physics, 104: 1-7, 2008.

[21] S. W. Feng, et al., “Numerical simulation of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells,” NanoscaleRes. Lett. 9:  652-661, 2014.

[22] J. W. Leem, Y. T. Lee, J. S. Yu, “Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes,” Optical and Quantum Electronics,  41(8): 605-612, 2010.

[23] K. Jolson Singh, S. K. Sarkar, “Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modelling using optimized InAlGaP BSF layers,” Optical and Quantum Electronics, 43(1-5): 1-21, 2012.

[24] S. M. Ahmadi, F. Parandin, “Design and simulation of a highly efficient InGaN/Si double-junction solar cell,” JECEI, 5(2): 157-162, 2017.

[25] S. Nacer, A. Aissat, “Simulation and optimization of current matching double-junction InGaN/Si solar cells,” Applied Physics A: 122-138, 2016.

[26] N. Naghavi, S. Spiering, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Progress in Photovoltaics: Research and Applications, 11(7): 437-443, 2003.

[27] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon,  and R. Noufi, “Progress toward 20 percent efficiency in 

Cu(In,Ga) Se2 polycrystalline thin film solar cells,” Progress in Photovoltaics, 7. No. 4): 311-316, 1999.

[28] V. Saji, S. Lee, C. W. Lee, “CIGS thin film solar cells by electrodeposition,” Journal of the Korean Electrochemical Society, 14(9): 61-70, 2011.

[29] A. Chirila, S. Buecheler, et al. “Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films,” Nature Materials, 10(11): 857-861, 2011.

[30] I. Bouchama, K. Djessas, F. Djahli, A. Bouloufa, “Simulation approach for studying the performances of original superstrate CIGS thin films solar cells,” Thin Solid Films, 519(21): 7280-7283, 2011.

[31]  B. Farhadi, M. Naseri, “An optimized efficient dual junction InGaN/CIGS solar cell: A numerical simulation,” Superlattices and Microstructures, 96: 104-110, 2016.


Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.