Document Type : Original Research Paper
Authors
1 Department of Electrical Engineering, Beyza Branch, Islamic Azad University, Beyza, Iran.
2 Department of Electrical Engineering, Firouzabad Institute of Higher Education, Firouzabad, Iran.
Abstract
Background and Objectives: Coriolis vibratory gyroscope is one of the most modern types of gyroscopes that has been substituted for the common gyroscopes with some differences in the test mass design and elastic suspension. According to the important features observed in the capacitive excitation of the actuators regarding the piezoelectric actuators, the operation principles and their formulations are completely changed, which require both two dimensional and finite element analysis to evaluate their optimal performance. Because the sensors are usually vibrating continuously while operation.
Methods: In this paper a general framework is presented that fully describes the influence of the parameters related to different frequency operating modes. The main idea of the vibration gyroscope is to replace the rotational rotor with a vibrational structure to utilize the effects of Coriolis force, which causes the secondary motion of a sensitive mass to match an angular velocity.
Results: In this paper, the sensitivity analysis and performance evaluation of a hemispherical vibrational gyroscope are discussed. The frequency split phenomenon, the sensed voltage around the resonance frequency and Young's modulus variation are also investigated.
Conclusion: Finally, the results of the simulated resonance frequencies are compared and validated with the mathematical and theoretical principles.
Keywords
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article