Document Type : Original Research Paper
Authors
Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
Abstract
Background and Objectives: In this paper, a constrained cooperative distributed model predictive control (DMPC) is proposed. The proposed DMPC is based on linear adaptive generalized predictive control (AGPC) to control uncertain nonlinear large-scale systems.
Methods: The proposed approach, has two main contributions. First, a novel cooperative optimization strategy is proposed to improve the centralized global cost function of each local controller. Second, using the proposed linear distributed AGPC (DAGPC), the mismatch between linearized and nonlinear models is compensated via online identification of the linearized model in each iteration of optimization.
Results: The proposed novel cooperative optimization strategy decreases the computational burden of optimization process compared to conventional cooperative DMPC strategies. Moreover, the proposed linear DAGPC decreases the satisfaction time of the terminal condition compared to conventional DMPC methods. The paper establishes sufficient conditions for the closed-loop stability. The performance and effectiveness of proposed method is demonstrated through simulation of a quadruple-tank system for both certain and uncertain situations. The imposed uncertainty changes the system from minimum phase to nonminimum-phase situation. Closed-loop stability and proper convergences are concluded from simulation results of both situations.
Conclusion: Most important advantages of proposed linear cooperative DAGPC are its less design complexity and consequently less convergence time compared to fully nonlinear DMPC methods, due to its online identification of the linearized model.
Keywords
- Uncertain nonlinear large-scale system
- constrained cooperative DMPC
- cooperative optimization
- linear distributed adaptive generalized predictive control
- online identification
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article