Document Type : Original Research Paper

Authors

1 E-Learning College, Shiraz University, Shiraz, Iran

2 Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran

3 Department of Computer Science and Engineering & Information Technology, Shiraz University, Shiraz, Iran

Abstract

Background and Objectives: It is generally accepted that the highest cost in software development is associated with the software maintenance phase. In corrective maintenance, the main task is correcting the bugs found by the users. These bugs are submitted by the users to a Bug Tracking System (BTS). The bugs are evaluated by the bug triager and assigned to the developers to correct them. To find a related developer to correct the bug, recent developers’ activities and previous bug fixes must be examined. This paper presents an automated method to assign bugs to developers by identifying similarity between new bugs and previously reported bug reports.
Methods: For automatic bug assignment, four clustering techniques (i.e. Expectation-Maximization (EM), Farthest First, Hierarchical Clustering, and Simple Kmeans) are used where a tag is created for each cluster that indicates an associated developer for bug correction. To evaluate the quality of the proposed methods, the clusters generated by the methods are compared with the labels suggested by an expert triager.
Results: To evaluate the performance of the proposed method, we use real-world data of a large scale web-based system which is stored in the BTS of a software company. To select the appropriate algorithm for the clustering, the outputs of each clustering algorithm are compared to the labels suggested by the expert triager. The algorithm with closer output to the expert opinion is selected as the best algorithm. The results showed that EM and FarthestFirst clustering algorithms with 3% similarity error have the most similarity with the expert opinion.
Conclusion: the results obtained by the algorithms show that we can successfully apply them for bug assignment in real-world software development environments.


======================================================================================================
Copyrights
©2020 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
======================================================================================================

Keywords

Main Subjects


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image