Document Type : Original Research Paper

Authors

Artificial Intelligence Department, Faculty of Computer Engineering , Shahid RajaeeTeacher Training University, Tehran, Iran.

Abstract

Background and Objectives: Many real-world problems are time series forecasting (TSF) problem. Therefore, providing more accurate and flexible forecasting methods have always been a matter of interest to researchers. An important issue in forecasting the time series is the predicated time interval.
Methods: In this paper, a new method is proposed for time series forecasting that can make more accurate predictions at larger intervals than other existing methods. Neural networks are an effective tool for estimating time series due to their nonlinearity and their ability to be used for different time series without specific information of those.  A variety of neural networks have been introduced so far, some of which have been used in forecasting time series.  Encoder decoder Networks are an example of networks that can be used in time series forcasting. an encoder network encodes the input data based on a particular pattern and then a decoder network decodes the output based on the encoded input to produce the desired output. Since these networks have a better understanding of the context, they provide a better performance. An example of this type of network is transformer.  A transformer neural network based on the self-attention is presented that has special capability in forecasting time series problems.
Results: The proposed model has been evaluated through experimental results on two benchmark real-world TSF datasets from different domain. The experimental results states that, in terms of long-term estimation Up to eight times more resistant and in terms of estimation accuracy about 20 percent improvement, compare to other well-known methods, is obtained. Computational complexity has also been significantly reduced.
Conclusion: The proposed tool could perform better or compete with other introduced methods with less computational complexity and longer estimation intervals. It was also found that with better configuration of the network and better adjustment of attention, it is possible to obtain more desirable results in any specific problem.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image