Document Type : Original Research Paper


Department of Communication Engineering, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran.


Background and Objectives: Video processing is one of the essential concerns generally regarded over the last few years. Social group detection is one of the most necessary issues in crowd. For human-like robots, detecting groups and the relationship between members in groups are important. Moving in a group, consisting of two or more people, means moving the members of the group in the same direction and speed.
Methods: Deep neural network (DNN) is applied for detecting social groups in the proposed method using the parameters including Euclidean distance, Proximity distance, Motion causality, Trajectory shape, and Heat-maps. First, features between pairs of all people in the video are extracted, and then the matrix of features is made. Next, the DNN learns social groups by the matrix of features.
Results: The goal is to detect two or more individuals in social groups. The proposed method with DNN and extracted features detect social groups. Finally, the proposed method’s output is compared with different methods.
Conclusion: In the latest years, the use of deep neural networks (DNNs) for learning and detecting has been increased. In this work, we used DNNs for detecting social groups with extracted features. The indexing consequences and the outputs of movies characterize the utility of DNNs with extracted features.


Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Shahid Rajaee Teacher Training University


Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.