Document Type : Original Research Paper


1 Faculty of Electrical Engineering, Malek-Ashtar University of Technology (MUT), Tehran, Iran

2 Supreme National Defense University and institute for Strategic Research, Tehran, Iran.


Background and Objectives: Dielectric Barrier discharge (DBD) is a suitable method to generating Non-thermal plasma at atmospheric pressure, which utilizes Pulsed power supplies as exciters. Increasing pulse voltage range and frequency and compactness are important issues that should be taking into consideration.
Methods: The high voltage pulse generators which are introduced in the literature have some disadvantages and complexities such as need of additional winding to reset the transformer core and operating under hard switching which increases electromagnetic noise and loss. The leakage inductance of the high voltage transformer increases the rise time of the pulse which is undesirable for DBD applications. The energy stored in the leakage inductance causes the voltage spike across the switch, witch necessitates the use of snubber circuits. The main contribution of this paper is a new high voltage pulse generator with the following characteristics, 1) a capacitor is paralleled with the main switch to reset the transformer core and to provide the soft switching condition for the switch. 2) The resonant charging technique is used which doubles the secondary winding voltage which reduces the turns ratio of high voltage transformer for a certain output pulse peak. 3) The sharpening circuit using magnetic switch produces a sharp high voltage pulse.
Results: The proposed high voltage pulse generator is designed and simulated using Pspice software. To verify the theoretical results,  a prototype with the input voltage 48 V, the output voltage pulse 1.5 kV, and the rise time of the output pulse 50 ns is constructed and tested.
Conclusion: This paper proposes a new pulse generator (PG). The proposed PG uses three techniques named forward, resonant charging, and magnetic switch to produce a high-voltage nanosecond pulse. The resonant charging double the secondary voltage of the pulse transformer, which causes reduction in turn ratio of the pulse transformer and decreases the weigh, volume, and price of the PT. The magnetic switch section finally produces a nanosecond high-voltage pulse. The magnitude of the output pulse can be varied using the input source voltage, the MS reset current and the duty cycle. The core of the pulse transformer resets by using a capacitor paralleled with the switch and the PG does not need any additional reset winding like the conventional DC-DC forward converter.


Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Shahid Rajaee Teacher Training University


Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.