Document Type : Original Research Paper

Authors

1 Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.

2 Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

3 Department of Electrical Engineering, Yazd University, Yazd, Iran.

Abstract

Background and Objectives: In this paper, a novel structure as a Folded-Mirror (FM) Trans-impedance Amplifier (TIA) is designed and introduced for the first time based on the combination of the current-mirror and the folded-cascade topologies. The trans-impedance amplifier stage is the most critical building block in a receiver system. This novel proposed topology is based on the combination of the current mirror topology and the folded-cascade topology, which is designed using active elements. The idea is to use a current mirror topology at the input node. In the proposed circuit, unlike many other reported designs, the signal current (and not the voltage) is being amplified till it reaches the output node. The proposed TIA benefits from a low input resistance, due to the use of a diode-connected transistor, as part of the current mirror topology, which helps to isolate the dominant input capacitance. So, as a result, the data rate of 5Gbps is obtained by consuming considerably low power. Also, the designed circuit employs only six active elements, which yields a small occupied chip area, while providing 40.6dBΩ of trans-impedance gain, 3.55GHz frequency bandwidth, and 664nArms input-referred noise by consuming only 315µW power using a 1V supply. Results justify the proper performance of the proposed circuit structure as a low-power TIA stage.
Methods: The proposed topology is based on the combination of the current mirror topology and the folded-cascade topology. The circuit performance of the proposed folded-mirror TIA is simulated using 90nm CMOS technology parameters in the Hspice software. Furthermore, the Monte-Carlo analysis over the size of widths and lengths of the transistors is performed for 200runs, to analyze the fabrication process.
Results: The proposed FM TIA circuit provides 40.6dBΩ trans-impedance gain and 3.55GHz frequency bandwidth, while, consuming only 315µW power using a 1V supply. Besides, as analyzing the quality of the output signal in the receiver circuits for communication applications is vital, the eye-diagram of the proposed FM TIA for a 50µA input signal is opened about 5mV, while, for a 100µA input signal the eye is opened vertically about 10mV. So, the vertical and horizontal opening of the eye is clearly shown. Furthermore, Monte-Carlo analysis over the trans-impedance gain represents a normal distribution with the mean value of 40.6dBΩ and standard deviation of 0.4dBΩ. Also, the value of the input resistance of the FM TIA is equal to 84.4Ω at low frequencies and reaches the value of 75Ω at -3dB frequency. The analysis of the effect of the feedback network on the value of the input resistance demonstrates the input resistance in the absence of the feedback network reaches up to 1.4MΩ, which yields the importance of the existence of the feedback network to obtain a broadband system.
Conclusion: In this paper, a trans-impedance amplifier based on a combination of the current-mirror topology and the folded-cascade topology is presented, which amplifies the current signal and converts it to the voltage at the output node. Due to the existence of a diode-connected transistor at the input node, the input resistance of the TIA is comparatively small. Furthermore, four out of six transistors are PMOS transistors, which represent less thermal noise in comparison with NMOS transistors. Also, the proposed Folded-Mirror topology occupies a relatively small area on-chip, due to the fact that no passive element is used in the feedforward network. Results using 90nm CMOS technology parameters show 40.6dBΩ trans-impedance gain, 3.55GHz frequency bandwidth, 664nArms input-referred noise, and only 315µW power dissipation using a 1volt supply, which indicates the proper performance of the proposed circuit as a low-power building block.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University

 

LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image