Document Type : Original Research Paper

Authors

1 Optoelectronics and Nanophotonics Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.

2 Department of Electrical Engineering, Faculty of Electronic and Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran.

3 Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran.

Abstract

Background and Objectives: One of the common methods for measuring the contact resistance of graphene sheets is the transfer length or transmission line method (TLM). Apart from the contact resistance, TLM gives the resistance of the channel sheet and the effective transfer length of the measured samples. Furthermore, the implementation of TLM is simple. To analyze this method, one can use circuit modeling (CM).
Methods: An important parameter of TLM is the contact resistance between the metal electrode and the graphene channel. To compare this parameter with other measures, it is normalized by multiplying it by the channel width. In this research, for TLM analysis, all the components of the structure including electrodes, graphene channel, and metal-graphene contact are modeled in a circuit.
Results: PSpice and MATLAB are integrated for TLM circuit modeling. The metal electrodes and the graphene channel are modeled based on the values of the resistances measured in the laboratory using the van der Pauw method and the resistances reported in the article in ohms per square. Moreover, the metal-graphene contact resistance is considered based on the values reported in the literature in ohms-micrometers.
Conclusion: The modeling results show that, in addition to the effective transfer length, the effective transfer width can be defined on a contact, according to the dimensions of the structure. Therefore, the channel width is a vague characteristic of the TLM measurement, which plays a very important role in measuring contact resistance. Furthermore, the contact resistance and the resistance of the channel sheet are independent of each other and of the distance between the contacts. If defects in the graphene channel are randomly distributed along the channel between the contacts, they do not have a significant impact on the contact resistance, while they increase the resistance of the graphene sheet provided that they do not disrupt the channel. Indeed, for a 10% defect (or 90% coverage along the channel), the resistance of the sheet increases by 16%. In addition, by using this modeling, parameters such as the distribution of the contact current, the sources of errors, and their influence in determining the contact resistance and resistance of the channel sheet are investigated.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image