Document Type : Original Research Paper
Authors
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Abstract
Background and Objectives: The detection of community in networks is an important tool for revealing hidden data in network analysis. One of the signs that the community exists in the network is the neighborhood density between nodes. Also, the existence of a concept called a motif indicates that a community with a high edge density has a correlation between nodes that go beyond their close neighbors. Motifs are repetitive edge patterns that are frequently seen in the network.
Methods: By estimating the triangular motif in the network, our proposed probabilistic motif-based community detection model (PMCD) helps to find the communities in the network. The idea of the proposed model is network analysis based on structural density between nodes and detecting communities by estimating motifs using probabilistic methods.
Results: The suggested model's output is the strength of each node's affiliation to the communities and detecting overlaps in communities. To evaluate the performance and accuracy of the proposed method, experiments are done on real-world and synthetic networks. The findings show that, compared to other algorithms, the proposed method is acting more accurately and densely in detecting communities.
Conclusion: The advantage of PMCD in using the probabilistic generative model is speeding up the computation of the hidden parameters and establishing the community based on the likelihood of triangular motifs. In fact, the proposed method proves there is a probabilistic correlation between the observation of two node pairs in different communities and the increased existence of motif structure in the network.
Keywords
Main Subjects
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/
Publisher’s Note
JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher
Shahid Rajaee Teacher Training University
Send comment about this article