Document Type : Original Research Paper


Department of Electrical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.


Background and Objectives: Metastatic castration-sensitive prostate cancer (mCSPC) represents a critical juncture in the management of prostate cancer, where the accurate prediction of the onset of castration resistance is paramount for guiding treatment decisions.
Methods: In this study, we underscore the power and efficiency of auto-ML models, specifically the Random Forest Classifier, for their low-code, user-friendly nature, making them a practical choice for complex tasks, to develop a predictive model for the occurrence of castration resistance events (CRE (. Utilizing a comprehensive dataset from MSK (Clin Cancer Res 2020), comprising clinical, genetic, and molecular features, we conducted a comprehensive analysis to discern patterns and correlations indicative of castration resistance. A random forest classifier was employed to harness the dataset's intrinsic interactions and construct a robust predictive model.
Results: We used over 18 algorithms to find the best model, and our results showed a significant achievement, with the developed model demonstrating an impressive accuracy of 75% in predicting castration resistance events. Furthermore, the analysis highlights the importance of specific features such as 'Fraction Genome Altered ‘and the role of prostate specific antigen (PSA) in castration resistance prediction.
Conclusion: Corroborating these findings, recent studies emphasize the correlation between high 'Fraction Genome Altered' and resistance and the predictive power of elevated PSA levels in castration resistance. This highlights the power of machine learning in improving outcome predictions vital for prostate cancer treatment. This study deepens our insights into metastatic castration-sensitive prostate cancer and provides a practical tool for clinicians to shape treatment strategies and potentially enhance patient results.


Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:


Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Shahid Rajaee Teacher Training University


Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.