Document Type : Original Research Paper

Authors

1 Department of Computer and Information Technology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

2 PhD Candidate, Computer Science, University of Saskatchewan, Saskatoon, Canada.

Abstract

Background and Objectives: In recent years, various metaheuristic algorithms have become increasingly popular due to their effectiveness in solving complex optimization problems across diverse domains. These algorithms are now being utilized for an ever-expanding number of real-world applications across many fields. However, there are two critical factors that can significantly impact the performance and optimization capability of metaheuristic algorithms. First, comprehensively understanding the intrinsic behavior of the algorithms can provide key insights to improve their efficiency. Second, proper calibration and tuning of an algorithm's parameters can dramatically enhance its optimization effectiveness.
Methods: In this study, we propose a novel response surface methodology-based approach to thoroughly analyze and elucidate the behavioral dynamics of optimization algorithms. This technique constructs an informative empirical model to determine the relative importance and interaction effects of an algorithm's parameters. Although applied to investigate the Gravitational Search Algorithm, this systematic methodology can serve as a generally applicable strategy to gain quantitative and visual insights into the functionality of any metaheuristic algorithm.
Results: Extensive evaluation using 23 complex benchmark test functions exhibited that the proposed technique can successfully identify ideal parameter values and their comparative significance and interdependencies, enabling superior comprehension of an algorithm's mechanics.

Conclusion: The presented modeling and analysis framework leverages multifaceted statistical and visualization tools to uncover the inner workings of algorithm behavior for more targeted calibration, thereby enhancing the optimization performance. It provides an impactful approach to elucidate how parameter settings shape algorithm searche so they can be calibrated for optimal efficiency.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image