Document Type : Original Research Paper

Authors

1 Department of Electrical Engineering, Sari Branch, Islamic Azad University, Sari, Iran.

2 Research Laboratory for Integrated Circuits, Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University.

Abstract

Background and Objectives: In recent years, the electronics industry has experienced rapid expansion, leading to increased concerns surrounding the expenses associated with designing and sizing integrated circuits. The reliability of these circuits has emerged as a critical factor influencing the success of production. Consequently, the necessity for optimization algorithms to enhance circuit yield has become increasingly important. This article introduces an enhanced approach for optimizing analog circuits through the utilization of a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and includes a thorough evaluation. The main goal of this methodology is to improve both the speed and precision of yield calculations.
Methods: The proposed approach includes generating initial designs with desired characteristics in the critical analysis phase. Following this, designs that exceed a predefined yield threshold are replaced with the initial population that has lower yield values, generated using the classical MOEA/D algorithm. This replacement process results in notable improvements in yield efficiency and computational speed compared to alternative Monte Carlo-based methods.
Results: To validate the effectiveness of the presented approach, some circuit simulations were conducted on a two-stage class-AB Op-Amp in 180 nm CMOS technology. With a high yield value of 99.72%, the approach demonstrates its ability to provide a high-speed and high-accuracy computational solution using only one evolutionary algorithm. Additionally, the observation that modifying the initial population can improve the convergence speed and yield value further enhances the efficiency of the technique. These findings, backed by the simulation results, validate the efficiency and effectiveness of the proposed approach in optimizing the performance of the Op-Amp circuit.
Conclusion: This paper presents an enhanced approach for analog circuit optimization using MOEA/D. By incorporating critical analysis, it generates initial designs with desired characteristics, improving yield calculation efficiency. Designs exceeding a preset yield threshold are replaced with lower yield ones from the initial population, resulting in enhanced computational speed and accuracy compared to other Monte Carlo-based methods. Simulation results for a two-stage class-AB Op-Amp in 180 nm CMOS technology show a yield of 99.72%, highlighting the method's effectiveness in achieving high speed and accuracy with a single evolutionary algorithm.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University

 

LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image