Document Type : Original Research Paper

Authors

Department of Electrical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran.

Abstract

Background and Objectives: Power transformer (PT) health assessment is crucial for ensuring the reliability of power systems. Dissolved Gas Analysis (DGA) is a widely used technique for this purpose, but traditional DGA interpretation methods have limitations. This study aims to develop a more accurate and reliable PT health assessment method using an ensemble learning approach with DGA.
Methods: The proposed method utilizes 11 key parameters obtained from real PT samples. In this way, synthetic data are generated using statistical simulation to enhance the model's robustness. Twelve different classifiers are initially trained and evaluated on the combined dataset. Two novel indices (a risk index and an unnecessary cost index) are introduced to assess the classifiers' performance alongside traditional metrics such as accuracy, precision, and the confusion matrix. An ensemble learning method is then constructed by selecting classifiers with the lowest risk and cost indices.
Results: The ensemble learning approach demonstrated superior performance compared to individual classifiers. The learning algorithm achieved high accuracy (99%, 92%, and 86% for three health classes), a low unnecessary cost index (6%), and a low misclassification risk (16%). This result indicates the effectiveness of the ensemble approach in accurately detecting PT health conditions.
Conclusion: The proposed ensemble learning method provides a reliable and accurate assessment of PT health using DGA data. This approach effectively optimizes maintenance strategies and enhances the overall reliability of power systems by minimizing misclassification risks and unnecessary costs.

Keywords

Main Subjects

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

 

Publisher’s Note

JECEI Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

 

Publisher

Shahid Rajaee Teacher Training University


LETTERS TO EDITOR

Journal of Electrical and Computer Engineering Innovations (JECEI) welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in JECEI should be sent to the editorial office of JECEI within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.


[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.

[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.

[3] Letters can be no more than 300 words in length.

[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.

[5] Anonymous letters will not be considered.

[6] Letter writers must include their city and state of residence or work.

[7] Letters will be edited for clarity and length.

CAPTCHA Image