[1] S. Liu, Y. Shen, and Z. Zhu, “A 12-bit 10 MS/s SAR ADC with high linearity and energy-efficient switching,” IEEE Transactions on Circuits and Systems, vol. 63, no. 10, pp. 1616 – 1627, 2016.
[2] C. Liu, M. Huang, and Y. H. Tu, “A 12 bit 100 MS/s SAR-assisted digital-slope ADC,” IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, 2016.
[3] Kh. Hadidi, “Data converter course notes,” Urmia University, Urmia, Iran, 2005.
[4] Y. Chung, M. Wu, and H. Li, “A 12-bit 8.47-fJ/conversion-step capacitor-swapping SAR ADC in 110-nm CMOS,” IEEE Transactions on Circuits and Systems, vol. 62, no. 1, pp. 10-18, 2015.
[5]Y. Chung, M. Wu, and H. Li, “A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3059-3066, 2013.
[6] Y. Song, Z. Xue, Y. Shiquan Fan, and L. Geng, “A 0.6-V 10-bit 200-kS/s fully differential SAR ADC with incremental converting algorithm for energy efficient applications,” IEEE Transactions on Circuits and System, vol. 63, no. 4, pp. 449-458, 2016.
[7] Y. Tao and Y. Lian, “A 0.8-V, 1-MS/s, 10-bit SAR ADC for multi-channel neural recording,” IEEE Transactions on Circuits and Systems, vol. 62, no. 2, pp. 366-375, 2015.
[8] S. Lei, D. Qinyuan, L. Chuangchuan, and Q. Gaoshuai, “Analysis on capacitor mismatch and parasitic capacitors effect of improved segmented-capacitor array in SAR ADC,” in Proc. Third International Symposium on Intelligent Information Technology Application, vol. 2, pp. 280-283, Shanghai, China, 2009.
[9] J. Wen, P. Hung Chang, J. Huang, and W. Lai, “Chip design of a 12-bit 5MS/s fully differential SAR ADC with resistor- capacitor array DAC technique for wireless application,” in Proc. IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1-4, Ningbo, China, 2015.
[10] W. Lai, J. Huang, C. Hsieh, and F. Kao, “An 8-bit 2 MS/s successive approximation register analog-to-digital converter for bioinformatics and computational biology Application,” IEEE 12th International Conference on Networking, Sensing and Control (ICNSC), pp. 576-579, Taipei, Taiwan, 2015.[11] W. Lai, J. Huang, T. Ye, and C.W. Shih “Integrated successive approximation register analog-to-digital converter for healthcare systems applications,” in Proc. 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1-3, Guilin, China, 2014.
[12] W. Lai, J. Huang, and W. Lin “1MS/s low power successive approximations register ADC for 67-fJ/conversion-step,” in Proc. 2012 IEEE Asia Pacific Conference on Circuits and Systems, pp. 260-263, Kaohsiung, Taiwan, 2012.
[13] P. Lee, J. Lin, and C. Hsieh, “A 0.4 V 1.94 fJ/conversion-step 10 bit 750 kS/s SAR ADC with input-range-adaptive switching,” IEEE Transactions on Circuits and Systems, vol. 63, no. 12, pp. 2149-2157, 2016.
[14] M. Kim, Y. Kim, Y. Kwak, and G. Ahn, “A 12-bit 200-kS/s SAR ADC with hybrid RC DAC,” in Proc. 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 185-188, Ishigaki, Japan, 2014.
[15] S. Wong, U. Chio, Y. Zhu, S. Sin, S. Pan U, and R. Paulo Martins, “A 2.3 mW 10-bit 170 MS/s two-step binary-search assisted time-interleaved SAR ADC,” IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1783-1794, 2014.
[16] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto “A 10-b 50-MS/s 820µW SAR ADC with on-chip digital calibration,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 6, pp. 410-416, 2010.
[17] Y. Chung, C. Yen, and M. Hsuan Wu, “A 24µW 12-bit 1-MS/s SAR ADC with two-step decision DAC switching in 110-nm CMOS,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 11, pp. 3334-3344, 2016.
[18] M. Yee Ng, “0.18um low voltage 12-bit successive-approximation-register analog-to-digital converter (SAR ADC),” in Proc. 3rd Asia Symposium on Quality Electronic Design (ASQED), pp. 277-281, Kuala Lumpur, Malaysia, 2011.
[19] W. Tseng, W. Lee, C. Huang, and P. Chiu, “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2222- 2231, 2016.
[20] S. Kazeminia and S. Mahdavi, “A 800MS/s, 150µV input-referred offset single-stage latched comparator,” in Proc. 23rd International Conference Mixed Design of Integrated Circuits and Systems, pp. 119-123, Lodz, Poland, 2016.
[21] S. Kazeminia, S. Mahdavi, and R. Gholamnejad, “Bulk controlled offset cancellation mechanism for single-stage latched comparator,” in Proc. 23rd International Conference Mixed Design of Integrated Circuits and Systems, pp. 174-178, Lodz, Poland, 2016.
[22] W. Xiong, Y. Guo, U. Zschieschang, H. Klauk, and B. Murmann, “A 3-V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass,” IEEE Journal of Solid-State Circuits, vol. 45, no. 7, pp. 1380-1388, 2010.
[23] Kh. Hadidi, V. S. Tso, and G. C. Temes, “An 8-b 1.3-MHz successive approximation A/D Converter,” IEEE J. Solid-State Circuits, vol. 25, no. 3, pp. 880-885, June 1990.
[24] L. Cong, “Pseudo C-2C ladder-based data converter technique,” IEEE Trans. Circuits Syst. II, Analog Digital Signal Processing, vol. 48, no. 10, pp. 927-929, 2001.
[25] Y. M. Liao and T. C. Lee, “A 6-b 1.3Gs/s A/D converter with C-2C switch-capacitor technique,” in Proc. IEEE Int. Symp. on VLSI-DAT, pp. 1-4. Hsinchu, Taiwan, 2006.
[26] H. Kim, Y. Min, Y. Kim, and S. Kim, “A low power consumption 10-bit rail-to-rail SAR ADC using a C-2C capacitor array,” in Proc. IEEE Int. Conf. on EDSSC, pp. 1-4, Hong Kong, China, 2009.
[27] S. Kazeminia, S. Mahdavi, and Kh. Hadidi, “Digitally-assisted offset cancellation technique for open loop residue amplifiers in high-resolution and high-speed ADCs,” in Proc. 23rd International Conference Mixed Design of Integrated Circuits and Systems, pp. 197-202, Lodz, Poland, 2016.
[28] D. S. Khosrov, “A new offset cancelled latch comparator for high-speed, low-power ADCs,” in Proc. IEEE Asia Pacific Conference on Circuits and Systems, APCCAS, pp. 13-16, Kuala Lumpur, Malaysia, Dec., 2010.
[29] S. W. Lee, H. J. Chung, and C.-H. Han, “C-2C digital-to-analogue converter on insulator,” IEEE Electron. Lett., vol. 35, no. 15, pp. 1242-1243, 1999.
[30] M. Taherzadeh-Sani, R. Lotfi, and F. Nabki, “A 10-bit 110 kS/s 1.16 muhbox {W} SA-ADC with a hybrid differential/single-ended DAC in 180-nm CMOS for multichannel biomedical applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 8, pp. 584-588, 2014.
[31] W. Lai, J. Huang, and C. Hsieh, “A 10-bit 20 MS/s successive approximation register analog-to-digital converter using single-sided DAC switching method for control application,” in Proc. CACS International Automatic Control Conference (CACS 2014), pp. 29-33, Kaohsiung, Taiwan, 2014.
[32] S. Aghaie, J. Mueller, R. Wunderlich, and S. Heinen, “Design of a low-power calibrate-able charge-redistribution SAR ADC”, 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 1-4 Grenoble, France, 2014.
[33] R. Rajendran, P.V. Ramakrishna, “A design of 6-bit 125-MS/s SAR ADC in 0.13-µm MM/RF CMOS process”, in Proc. International Symposium on Electronic System Design (ISED), pp. 23-27, Kolkata, India, 2012.
[34] S. P. Singh, A. Prabhakar, and A. B. Bhattcharyya, “C-2C ladder-based D/A converters for PCM codecs,” IEEE J. Solid-State Circuits, vol. SC-22, no. 6, pp.1197-1200, 1987.
Send comment about this article