Video Processing
A. Akbari; H. Farsi; S. Mohamadzadeh
Abstract
Background and Objectives: Video processing is one of the essential concerns generally regarded over the last few years. Social group detection is one of the most necessary issues in crowd. For human-like robots, detecting groups and the relationship between members in groups are important. Moving in ...
Read More
Background and Objectives: Video processing is one of the essential concerns generally regarded over the last few years. Social group detection is one of the most necessary issues in crowd. For human-like robots, detecting groups and the relationship between members in groups are important. Moving in a group, consisting of two or more people, means moving the members of the group in the same direction and speed. Methods: Deep neural network (DNN) is applied for detecting social groups in the proposed method using the parameters including Euclidean distance, Proximity distance, Motion causality, Trajectory shape, and Heat-maps. First, features between pairs of all people in the video are extracted, and then the matrix of features is made. Next, the DNN learns social groups by the matrix of features.Results: The goal is to detect two or more individuals in social groups. The proposed method with DNN and extracted features detect social groups. Finally, the proposed method’s output is compared with different methods.Conclusion: In the latest years, the use of deep neural networks (DNNs) for learning and detecting has been increased. In this work, we used DNNs for detecting social groups with extracted features. The indexing consequences and the outputs of movies characterize the utility of DNNs with extracted features.
A. Safaei; M. Jahed
Abstract
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has ...
Read More
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-D hand model recognition method that offers flexible and elaborate representation of hand motion. We used landmark points on the tips and joints of the fingers and calculated the 3-D coordinates of these points through a stereo vision system followed by a Hidden Markov Model (HMM) to recognize hand motions. Experimentally, in an effort to evaluate the formation of hand gestures similar to those used in rehabilitation sessions, we studied three evolving motions. Given the natural hand features and uncontrolled environment, we were able to classify and differentiate unnatural slowness or rapidness in the performance of such motions, ranging from 45% to 93%.